• Journal of Inorganic Materials
  • Vol. 36, Issue 6, 561 (2021)
Li SU, Jianping YANG*, Yue LAN, Lianjun WANG, and Wan JIANG
Author Affiliations
  • State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • show less
    DOI: 10.15541/jim20200347 Cite this Article
    Li SU, Jianping YANG, Yue LAN, Lianjun WANG, Wan JIANG. Interface Design of Iron Nanoparticles for Environmental Remediation[J]. Journal of Inorganic Materials, 2021, 36(6): 561 Copy Citation Text show less
    References

    [1] V LOWRY G, M JOHNSON K. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 38, 5208-5216(2004).

    [2] B WANG C, X ZHANG W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154-2156(1997).

    [3] Q LI X, X ZHANG W. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir, 22, 4638-4642(2006).

    [4] W TENG, N BAI, X ZHANG W et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environmental Science & Technology, 52, 230-236(2018).

    [5] M PONDER S, G DARAB J, E MALLOUK T. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34, 2564-2569(2000).

    [6] F FU, D DIONYSIOU D, H LIU. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, 194-205(2014).

    [7] T PHENRAT, N SALEH, V LOWRY G et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284-290(2007).

    [8] Z YANG, J QIAN, C PAN B et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proceedings of the National Academy of Sciences, 116, 6659-6664(2019).

    [9] H QIN, X GUAN, G TRATNYEK P. Effects of sulfidation and nitrate on the reduction of N-Nitrosodimethylamine by zerovalent iron. Environmental Science & Technology, 53, 9744-9754(2019).

    [10] T TOSCO, C CRUZ V, R SETHI et al. Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 77, 10-21(2014).

    [11] Y HUA, W WANG, X ZHANG W et al. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal. Chemosphere, 201, 603-611(2018).

    [12] D GRIEGER K, L BJERG P, A BAUN et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?. Journal of Contaminant Hydrology, 118, 165-183(2010).

    [13] F ZHU, L LI, T LIU et al. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ)in the soil leachate by nZVI/Ni bimetal material. Environmental Pollution, 227, 444-450(2017).

    [14] W HUANG, X LI W. Surface and interface design for heterogeneous catalysis. Physical Chemistry Chemical Physics, 21, 523-536(2019).

    [15] K CHU, F WANG, H ZHANG et al. Interface design of graphene/ copper composites by matrix alloying with titanium. Materials & Design, 144, 290-303(2018).

    [16] C CHEN P, M LIU, A MIRKIN C et al. Interface and heterostructure design in polyelemental nanoparticles. Science, 363, 959(2019).

    [17] Z YANG, J LIU, F WANG et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites. Composites Science and Technology, 132, 68-75(2016).

    [18] S CHANG W, J LIU H, H CHU Y et al. Tuning electronic transport in a self-assembled nanocomposite. ACS Nano, 8, 6242-6249(2014).

    [19] E ESPINO P, J BRAS, S DOMENEK et al. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites. Carbohydrate Polymers, 183, 267-277(2018).

    [20] J PENG, Q CHENG. High-performance nanocomposites inspired by nature. Advanced Materials, 29, 1702959(2017).

    [21] J HUANG, Z TANG, B GUO et al. Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal- ligand bonds. Macromolecular Rapid Communications, 37, 1040-1045(2016).

    [22] C SANCHEZ, F RIBOT, B LEBEAU. Molecular design of hybrid organic-inorganic nanocomposites synthesized via Sol-Gel chemistry. Journal of Materials Chemistry, 9, 35-44(1999).

    [23] Y ZHANG, S GONG, Q CHENG et al. Graphene-based artificial nacre nanocomposites. Chemical Society Reviews, 45, 2378-2395(2016).

    [24] A NALDONI, R PSARO, V DAL S et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 134, 7600-7603(2012).

    [25] J TANG, J LIU, M IMURA et al. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. Journal of the American Chemical Society, 137, 1572-1580(2015).

    [26] C XU Z, L HOU Y, H SUN S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society, 129, 8698-8699(2007).

    [27] H TSENG H, G SU J, C LIANG. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/ dechlorination of trichloroethylene. Journal of Hazardous Materials, 192, 500-506(2011).

    [28] Z LI, L WANG, J MENG et al. Zeolite-supported nanoscale zero- valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials, 344, 1-11(2018).

    [29] W LUO, Y WANG, P YANG J et al. Silicon/mesoporous carbon/ crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano, 10, 10524-10532(2016).

    [30] W LU, J LI, L CHEN et al. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution. Journal of Colloid and Interface Science, 505, 1134-1146(2017).

    [31] P YANG J, F ZHANG, Y ZHAO D et al. Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chemical Communications, 50, 713-715(2014).

    [32] P YANG J, X DOU S, Y ZHAO D et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Research, 8, 2503-2514(2015).

    [33] P YANG J, F ZHANG, Y ZHAO D et al. Mesoporous silica- coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Advanced Healthcare Materials, 3, 1620-1628(2014).

    [34] Y ZHAO D, Q HUO, D STUCKY G et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 120, 6024-6036(1998).

    [35] S BECK J, C VARTULI J, L SCHLENKER J et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 10834-10843(1992).

    [36] S INAGAKI, S GUAN, O TERASAKI et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 121, 9611-9614(1999).

    [37] W LI, F ZHANG, Y ZHAO D et al. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. Journal of the American Chemical Society, 134, 11864-11867(2012).

    [38] K KAMATA, Y LU, Y XIA. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. Journal of the American Chemical Society, 125, 2384-2385(2003).

    [39] W LI, H DENG Y, Y ZHAO D et al. Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. Journal of the American Chemical Society, 133, 15830-15833(2011).

    [40] Q YUE, J LI, J SU et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. Journal of the American Chemical Society, 139, 15486-15493(2017).

    [41] H SUN, X SHEN, H CHEN et al. Measuring the unusually slow ionic diffusion in polyaniline via study of yolk-shell nanostructures. Journal of the American Chemical Society, 134, 11243-11250(2012).

    [42] E ANTOLINI. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 88, 1-24(2009).

    [43] H BANG J, K HAN, S SUSLICK K et al. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. The Journal of Physical Chemistry C, 111, 10959-10964(2007).

    [44] E SKRABALAK S, S SUSLICK K. Porous carbon powders prepared by ultrasonic spray pyrolysis. Journal of the American Chemical Society, 128, 12642-12643(2006).

    [45] W XU H, X ZHANG W, P YANG J et al. Bimetallic PdCu nanocrystals immobilized by nitrogen-containing ordered mesoporous carbon for electrocatalytic denitrification. ACS Applied Materials & Interfaces, 11, 3861-3868(2019).

    [46] W TENG, N BAI, X ZHANG W et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ. Sci. Technol., 52, 230-236(2018).

    [47] Q WANG Q, Z ZHANG W, P YANG J et al. Porous-carbon- confined formation of monodisperse iron nanoparticle yolks toward versatile nanoreactors for metal extraction. Chemistry-A European Journal 2018, 24, 15663-15668.

    [48] L SU, W JIAN, P YANG J et al. Site-selective exposure of iron nanoparticles to achieve rapid interface enrichment for heavy metals. Chemical Communications, 56, 2795-2798(2020).

    [49] L SU, W JIAN, P YANG J et al. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification. Nano Letters, 19, 5423-5430(2019).

    [50] Y HU, X PENG, L ZHANG et al. Liquid nitrogen activation of zero-valent iron and its enhanced Cr(VI) removal performance. Environmental Science & Technology, 53, 8333-8341(2019).

    [51] C WANG, R BAER D, Y QIANG et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 131, 8824-8832(2009).

    [52] L LING, X ZHANG W. Reactions of nanoscale zero-valent iron with Ni(II): three-dimensional tomography of the “Hollow out” effect in a single nanoparticle. Environmental Science & Technology Letters, 1, 209-213(2014).

    [53] D WU, S PENG, Y ZHANG et al. Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core-shell structure: sulfidation and as distribution. ACS Sustainable Chemistry & Engineering, 6, 3039-3048(2018).

    [54] A MEFFRE, M RESPAUD, B CHAUDRET et al. Use of long chain amine as a reducing agent for the synthesis of high quality monodisperse iron(0) nanoparticles. Journal of Materials Chemistry, 21, 13464-13469(2011).

    [55] A EGEBERG, T BLOCK, C FELDMANN. Lithiumpyridinyl- driven synthesis of high-purity zero-valent iron nanoparticles and their use in follow-up reactions. Small, 15, 1902321(2019).

    [56] W LUO, K LIU H, P YANG J et al. Germanium nanograin decoration on carbon shell: boosting lithium-storage properties of silicon nanoparticles. Advanced Functional Materials, 26, 7800-7806(2016).

    [57] Z SUN, P YANG J, Y ZHAO D et al. A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core-shell nanostructures. Journal of Materials Chemistry A, 2, 6071-6074(2014).

    [58] Q WANG Q, W JIANG, P YANG J et al. Iron nanoparticles in capsules: derived from mesoporous silica-protected Prussian blue microcubes for efficient selenium removal. Chemical Communications, 54, 5887-5890(2018).

    [59] J JIAO, H WANG, L CAO et al. In situ confined growth based on a self-templating reduction strategy of highly dispersed Ni nanoparticles in hierarchical yolk-shell Fe@SiO2 structures as efficient catalysts. Chemistry-An Asian Journal, 11, 3534-3540(2016).

    [60] Y LAN, L CHEN J, P YANG J et al. Fe/Fe3C nanoparticle- decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. Journal of Materials Chemistry A, 8, 15853-15863(2020).

    [61] W LIANG H, W WEI, X FENG et al. Mesoporous metal-nitrogen- doped carbon electrocatalysts for highly efficient oxygen reduction reaction. Journal of the American Chemical Society, 135, 16002-16005(2013).

    [62] M XIAO, J ZHU, W XING et al. Meso/macroporous nitrogen- doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Advanced Materials, 27, 2521-2527(2015).

    [63] Y WU Z, X XU X, H YU S et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angewandte Chemie-International Edition, 54, 8179-8183(2015).

    [64] Z LI, G LI, F LI et al. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angewandte Chemie-International Edition, 54, 1494-1498(2015).

    [65] W TENG, W FAN J, X ZHANG W et al. Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 5, 4478-4485(2017).

    [66] J LI, C CHEN, X WANG et al. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. Journal of the Taiwan Institute of Chemical Engineers, 59, 389-394(2016).

    [67] C WANG, H LUO, S CHEN et al. Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 268, 124-131(2014).

    [68] R KANEL S, B MANNING, H CHOI et al. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39, 1291-1298(2005).

    [69] C TANG, L LING, X ZHANG W. Pb(II) deposition-reduction- growth onto iron nanoparticles induced by graphitic carbon nitride. Chemical Engineering Journal, 387, 124088(2020).

    [70] M CHEN, H WANG, P YANG J et al. Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen- doped carbon coralline. Nanoscale, 10, 19023-19030(2018).

    [71] W DUAN, G LI, C FENG et al. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Research, 161, 126-135(2019).

    [72] J WANG, L LING, X ZHANG W et al. Nitrogen-doped iron for selective catalytic reduction of nitrate to dinitrogen. Science Bulletin, 65, 926-933(2020).

    Li SU, Jianping YANG, Yue LAN, Lianjun WANG, Wan JIANG. Interface Design of Iron Nanoparticles for Environmental Remediation[J]. Journal of Inorganic Materials, 2021, 36(6): 561
    Download Citation