• Journal of Inorganic Materials
  • Vol. 34, Issue 4, 379 (2019)
Xiang-Xiong ZENG1, Jin-Chao YANG1, Lian ZUO1, Ben-Ben YANG1, Jun QIN1, and Zhi-Hang PENG2
Author Affiliations
  • 1Northwest Institute of Nuclear Technology, Xi’an 710024, China;
  • 2Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.15541/jim20180225 Cite this Article
    Xiang-Xiong ZENG, Jin-Chao YANG, Lian ZUO, Ben-Ben YANG, Jun QIN, Zhi-Hang PENG. Li/Ce/La Multidoping on Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics[J]. Journal of Inorganic Materials, 2019, 34(4): 379 Copy Citation Text show less
    References

    [1] S ZHANG, F YU. Piezoelectric materials for high temperature sensors. Journal of the American Ceramic Society, 94, 3153-3170(2011).

    [2] C TURNER R, A FUIERER P, E NEWNHAM R et al. Materials for high temperature acoustic and vibration sensors: a review. Applied Acoustics, 41, 299-324(1994).

    [3] X JI, S WANG, C SHAO et al. High-temperature corrosion behavior of SiBCN fibers for aerospace applications. ACS Applied Materials & Interfaces, 10, 19712-19720(2018).

    [4] B FRIT, P MERCURIO J. The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures. Journal of Alloys and Compounds, 188, 27-35(1992).

    [5] H PARK B, S KANG B, D BU S et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 401, 682-684(1999).

    [6] C SUBBARAO E. A family of ferroelectric bismuth compounds. Journal of Physics and Chemistry of Solids, 23, 665-676(1962).

    [7] E NEWNHAM R, W WOLFE R, F DORRIAN J. Structural basis of ferroelectricity in the bismuth titanate family. Materials Research Bulletin, 6, 1029-1039(1971).

    [8] H YAN, H ZHANG, J REECE M et al. Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics. Applied Physics Letters, 87(2005).

    [9] H YAN, H ZHANG, R UBIC et al. A lead-free high-Curie-point ferroelectric ceramic, CaBi2Nb2O9. Advanced Materials, 17, 1261-1265(2005).

    [10] Z PENG, Q CHEN, D LIU et al. Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9 Aurivillius type ceramics. Current Applied Physics, 13, 1183-1187(2013).

    [11] F LI, D LIN, Z CHEN et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Materials, 17, 349-354(2018).

    [12] X DU, W CHEN I. Ferroelectric thin films of bismuth-containing layered perovskites: Part I, Bi4Ti3O12. Journal of the American Ceramic Society, 81, 3260-3264(1998).

    [13] X YAN H, Z ZHANG, M ZHU W et al. The effect of (Li,Ce) and (K,Ce) doping in Aurivillius phase material CaBi4Ti4O15. Materials Research Bulletin, 39, 1237-1246(2004).

    [14] M WANG C, L ZHAO, F WANG J et al. Cerium-modified Aurivillius-type sodium lanthanum bismuth titanate with enhanced piezoactivities. Materials Science and Engineering: B, 163, 179-183(2009).

    [15] A KUMAR, D VARSHNEY. Crystal structure refinement of Bi1-xNdxFeO3 multiferroic by the Rietveld method. Ceramics International, 38, 3935-3942(2012).

    [16] M BLAKE S, J FALCONER M, M MCCREEDY et al. Cation disorder in ferroelectric Aurivillius phases of the type Bi2ANb2O9 (A=Ba, Sr, Ca). Journal of Materials Chemistry, 7, 1609-1613(1997).

    [17] Y WU, J CHEN, J YUAN. Structurerefinements and the influences of A-site vacancies on properties of Na0.5Bi2.5Nb2O9-based high temperature piezoceramics. Journal of Applied Physics, 120(2016).

    [18] Q ZHANG F, X LI Y. Recent progress on bismuth layer-structured ferroelectrics. Journal of Inorganic Materials, 29, 449-460(2014).

    [19] Z SIMÕES A, C AGUIAR E, S RICCARDI C et al. Effect of oxidizing atmosphere on ferroelectric and piezoelectric response of CaBi2Nb2O9 thin films. Materials Chemistry and Physics, 124, 894-899(2010).

    [20] B LONG C, Q FAN H, M LI M. High temperature Aurivillius piezoelectrics: the effect of (Li, Ln) modification on the structure and properties of (Li, Ln)(0.06)(Na, Bi)(0.44)Bi2Nb2O9 (Ln=Ce, Nd, La and Y). Dalton Transactions, 42, 3561-3570(2013).

    [21] L DIAO C, B XU J, W ZHENG H et al. Dielectric and piezoelectric properties of cerium modified BaBi4Ti4O15 ceramics. Ceramics International, 39, 6991-6995(2013).

    [22] Z PENG, D YAN, Q CHEN et al. Crystal structure, dielectric and piezoelectric properties of Ta/W codoped Bi3TiNbO9 Aurivillius phase ceramics. Current Applied Physics, 14, 1861-1866(2014).

    [23] Y SHIMAKAWA, Y KUBO, Y NAKAGAWA et al. Crystal structure and ferroelectric properties of ABi2Ta2O9 (A=Ca, Sr, and Ba). Physical Review B, 61, 6559-6564(2000).

    [24] D DAMJANOVIC. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. Journal of the American Ceramic Society, 88, 2663-2676(2005).

    [25] X TIAN, S QU, H MA et al. Effect of grain size on dielectric and piezoelectric properties of bismuth layer structure CaBi2Nb2O9 ceramics. Journal of Materials Science: Materials in Electronics, 27, 13309-13313(2016).

    [26] H CHEN, B SHEN, J XU et al. Correlation between grain sizes and electrical properties of CaBi2Nb2O9 piezoelectric ceramics. Journal of the American Ceramic Society, 95, 3514-3518(2012).

    Xiang-Xiong ZENG, Jin-Chao YANG, Lian ZUO, Ben-Ben YANG, Jun QIN, Zhi-Hang PENG. Li/Ce/La Multidoping on Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics[J]. Journal of Inorganic Materials, 2019, 34(4): 379
    Download Citation