• Photonics Research
  • Vol. 8, Issue 2, 110 (2020)
Guillaume Marcaud1、†,*, Samuel Serna1、2、6、†, Karamanis Panaghiotis3、†, Carlos Alonso-Ramos1, Xavier Le Roux1, Mathias Berciano1, Thomas Maroutian1, Guillaume Agnus1, Pascal Aubert1, Arnaud Jollivet1, Alicia Ruiz-Caridad1, Ludovic Largeau1, Nathalie Isac1, Eric Cassan1, Sylvia Matzen1, Nicolas Dubreuil4、5, Michel Rérat3, Philippe Lecoeur1, and Laurent Vivien1、7
Author Affiliations
  • 1Centre de Nanosciences et Nanotechnologies (C2N), Université-Paris-Sud, CNRS UMR 9001, Université Paris-Saclay, Orsay 91405, France
  • 2Current address: Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 3Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, 64053 Pau Cedex, France
  • 4Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex, France
  • 5Current address: LP2N, Institut d’Optique Graduate School, CNRS, Univ. Bordeaux, 33400 Talence, France
  • 6Department of Physics, Bridgewater State University, Bridgewater, Massachusetts 02325, USA
  • 7e-mail: laurent.vivien@c2n.upsaclay.fr
  • show less
    DOI: 10.1364/PRJ.8.000110 Cite this Article Set citation alerts
    Guillaume Marcaud, Samuel Serna, Karamanis Panaghiotis, Carlos Alonso-Ramos, Xavier Le Roux, Mathias Berciano, Thomas Maroutian, Guillaume Agnus, Pascal Aubert, Arnaud Jollivet, Alicia Ruiz-Caridad, Ludovic Largeau, Nathalie Isac, Eric Cassan, Sylvia Matzen, Nicolas Dubreuil, Michel Rérat, Philippe Lecoeur, Laurent Vivien. Third-order nonlinear optical susceptibility of crystalline oxide yttria-stabilized zirconia[J]. Photonics Research, 2020, 8(2): 110 Copy Citation Text show less
    References

    [1] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia. A continuous-wave Raman silicon laser. Nature, 433, 725-728(2005).

    [2] E. A. Kittlaus, H. Shin, P. T. Rakich. Large Brillouin amplification in silicon. Nat. Photonics, 10, 463-467(2016).

    [3] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [4] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics, 7, 597-603(2013).

    [5] K. Narayanan, S. F. Preble. Optical nonlinearities in hydrogenated-amorphous silicon waveguides. Opt. Express, 18, 8998-9005(2010).

    [6] S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, W. Ji. Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system. Opt. Express, 23, 1300-1307(2015).

    [7] C. Thu, P. Ehrenreich, K. K. Wong, E. Zimmermann, J. Dorman, W. Wang, A. Fakharuddin, M. Putnik, C. Drivas, A. Koutsoubelitis, M. Vasilopoulou, L. C. Palilis, S. Kennou, J. Kalb, T. Pfadler, L. Schmidt-Mende. Role of the metal-oxide work function on photocurrent generation in hybrid solar cells. Sci. Rep., 8, 3559(2018).

    [8] C. López-Gándara, F. M. Ramos, A. Cirera. YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J. Sens., 2009, 258489(2009).

    [9] R. Ramesh, D. G. Schlom. Whither oxide electronics?. MRS Bull., 33, 1006-1014(2008).

    [10] M. Bazzan, C. Sada. Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev., 2, 040603(2015).

    [11] L. Mechin. YBCO superconducting microbolometers fabricated by silicon micromachining(1996).

    [12] X. D. Wu, R. E. Muenchausen, N. S. Nogar, A. Pique, R. Edwards, B. Wilkens, T. S. Ravi, D. M. Hwang, C. Y. Chen. Epitaxial yttria-stabilized zirconia on (1102) sapphire for YBa2Cu3O7-δthin films. Appl. Phys. Lett., 58, 304-306(1991).

    [13] L. F. Chen, P. F. Chen, L. Li, S. L. Li, X. N. Jing, S. J. Pan, Y. H. Guo. YBa2Cu3O7 thin films grown on sapphire with epitaxial yttria-stabilized zirconia buffer layers. Appl. Phys. Lett., 61, 2412-2413(1992).

    [14] C. Jorel, H. Colder, A. Galdi, L. Méchin. Epitaxial PZT thin films on YSZ-buffered Si (001) substrates for piezoelectric MEMS or NEMS applications. IOP Conf. Ser.: Mater. Sci. Eng., 41, 012012(2012).

    [15] T. Falcade, C. de Fraga Malfatti. Fuel cell: a review and a new approach about YSZ solid oxide electrolyte deposition direct on LSM porous substrate by spray pyrolysis. Electrochemical Cells-New Advances in Fundamental Researches and Applications, 139-160(2012).

    [16] S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, A. Wokaun. Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition. Acta Materialia, 59, 2330-2340(2011).

    [17] X. Song, Z. Liu, M. Kong, C. Lin, L. Huang, X. Zheng, Y. Zeng. Thermal stability of yttria-stabilized zirconia (YSZ) and YSZ Al2O3 coatings. Ceram. Int., 43, 14321-14325(2017).

    [18] M. F. Manna, D. E. Grandstaff, G. C. Ulmer, E. P. Vicenzi. The chemical durability of yttria-stabilized ZrO2 pH and O2 geothermal sensors. Proceedings of the Tenth International Symposium on Water Rock Interaction, 295-299(2001).

    [19] S. K. Pandey, O. P. Thakur, R. Raman, A. Goyal, A. Gupta. Structural and optical properties of YSZ thin films grown by PLD technique. Appl. Surf. Sci., 257, 6833-6836(2011).

    [20] R. C. Buchanan, S. Pope. Optical and electrical properties of yttria stabilized zirconia (YSZ) crystals. J. Electrochem. Soc., 130, 962-966(1983).

    [21] N. Nicoloso, A. Löbert, B. Leibold. Optical absorption studies of tetragonal and cubic thin-film yttria-stabilized zirconia. Sens. Actuators B Chem., 8, 253-256(1992).

    [22] G. Marcaud, S. Matzen, C. Alonso-Ramos, X. Le Roux, M. Berciano, T. Maroutian, G. Agnus, P. Aubert, L. Largeau, V. Pillard, S. Serna, D. Benedikovic, C. Pendenque, E. Cassan, D. Marris-Morini, P. Lecoeur, L. Vivien. High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications. Phys. Rev. Mater., 2, 035202(2018).

    [23] K. K. Gopalan, D. Rodrigo, B. Paulillo, K. K. Soni, V. Pruneri. Ultrathin yttria-stabilized zirconia as a flexible and stable substrate for infrared nano-optics. Adv. Opt. Mater., 7, 1800966(2019).

    [24] S. Serna, N. Dubreuil. Bi-directional top-hat D-Scan: single beam accurate characterization of nonlinear waveguides. Opt. Lett., 42, 3072-3075(2017).

    [25] M. A. Parkes, K. Refson, M. D’Avezac, G. J. Offer, N. P. Brandon, N. M. Harrison. Chemical descriptors of yttria-stabilized zirconia at low defect concentration: an ab initio study. J. Phys. Chem. A, 119, 6412-6420(2015).

    [26] M. A. Parkes, D. A. Tompsett, M. D’Avezac, G. J. Offer, N. P. Brandon, N. M. Harrison. The atomistic structure of yttria stabilised zirconia at 6.7  mol%: an ab initio study. Phys. Chem. Chem. Phys., 18, 31277-31285(2016).

    [27] D. M. Bishop. Molecular vibrational and rotational motion in static and dynamic electric fields. Rev. Mod. Phys., 62, 343-374(1990).

    [28] P. Karamanis, R. Marchal, P. Carbonnière, C. Pouchan. Doping-enhanced hyperpolarizabilities of silicon clusters: a global ab initio and density functional theory study of Si10(Li, Na, K)n (n = 1, 2) clusters. J. Chem. Phys., 135, 044511(2011).

    [29] P. Karamanis, C. Pouchan, C. A. Weatherford, G. L. Gutsev. Evolution of properties in prolate (GaAs)n clusters. J. Phys. Chem. C, 115, 97-107(2011).

    [30] P. Karamanis. The importance of the DFT method on the computation of the second hyper polarizability of semiconductor clusters of increasing size: a critical analysis on prolate aluminum phosphide clusters. Int. J. Quantum Chem., 112, 2115-2125(2012).

    [31] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [32] C. Adamo, V. Barone. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys., 110, 6158-6170(1999).

    [33] A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648-5652(1993).

    [34] C. Ricca, A. Ringuedé, M. Cassir, C. Adamo, F. Labat. Revealing the properties of the cubic ZrO2 (111) surface by periodic DFT calculations: reducibility and stabilization through doping with aliovalent Y2O3. RSC Adv., 5, 13941-13951(2015).

    [35] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Ferrabone, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. Quantum-mechanical condensed matter simulations with crystal. WIREs Comput. Mol. Sci., 8, e1360(2018).

    [36] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian09 Revision D.01(2009).

    [37] E. V. Stefanovich, A. L. Shluger, C. R. A. Catlow. Theoretical study of the stabilization of cubic-phase ZrO2 by impurities. Phys. Rev. B, 49, 11560-11571(1994).

    [38] R. A. Ploc. The lattice parameter of cubic ZrO2 formed on zirconium. J. Nucl. Mat., 99, 124-128(1981).

    [39] E. Elizalde, J. M. Sanz, F. Yubero, L. Galan. Determination of optical constants of ZrO2 and Zr by electron energy-loss spectroscopy. Surf. Interface Anal., 16, 213-214(1990).

    [40] D. W. McComb. Bonding and electronic structure in zirconia pseudopolymorphs investigated by electron energy-loss spectroscopy. Phys. Rev. B, 54, 7094-7102(1996).

    [41] D. L. Wood, K. Nassau. Refractive index of cubic zirconia stabilized with yttria. Appl. Opt., 21, 2978-2981(1982).

    [42] B. Orr, J. Ward. Perturbation theory of the non-linear optical polarization of an isolated system. Mol. Phys., 20, 513-526(1971).

    [43] S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, J. G. Snijders, B. Champagne, B. Kirtman. Electric field dependence of the exchange-correlation potential in molecular chains. Phys. Rev. Lett., 83, 694-697(1999).

    [44] L. Zibordi-Besse, Y. Seminovski, I. Rosalino, D. Guedes-Sobrinho, J. L. F. Da Silva. Physical and chemical properties of unsupported (MO2)n clusters for M = Ti, Zr, or Ce and n = 1–15: a density functional theory study combined with the tree-growth scheme and Euclidean similarity distance algorithm. J. Phys. Chem. C, 122, 27702-27712(2018).

    [45] J. Zaanen, G. A. Sawatzky, J. W. Allen. Bandgaps and electronic structure of transition-metal compounds. Phys. Rev. Lett., 55, 418-421(1985).

    [46] S. Serna, J. Oden, M. Hanna, C. Caer, X. L. Roux, C. Sauvan, P. Delaye, E. Cassan, N. Dubreuil. Enhanced nonlinear interaction in a microcavity under coherent excitation. Opt. Express, 23, 29964-29977(2015).

    [47] A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, P. W. Smith. Dispersion of the nonlinear refractive index in sapphire. Opt. Lett., 29, 602-604(2004).

    [48] K. Ikeda, R. E. Saperstein, N. Alic, Y. Fainman. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express, 16, 12987-12994(2008).

    [49] S. C. Pinault, M. Potasek. Frequency broadening by self-phase modulation in optical fibers. J. Opt. Soc. Am. B, 2, 1318-1319(1985).

    [50] B. Champagne, E. A. Perpète, J.-M. André, B. Kirtman. Analysis of the vibrational static and dynamic second hyperpolarizabilities of polyacetylene chains. Synth. Met., 85, 1047-1050(1997).

    [51] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà, Y. Noël, L. Maschio, A. Erba, M. Rérat, S. Casassa. CRYSTAL17 User’s Manual(2017).

    [52] G. Hurst, M. Dupuis, E. Clementi. Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: applications to polyenes C4H6 to C22H24. J. Chem. Phys., 89, 385-395(1988).

    [53] M. Ferrero, M. Rérat, R. Orlando, R. Dovesi. The calculation of static polarizabilities of periodic compounds. The implementation in the CRYSTAL code for 1D, 2D and 3D systems. J. Comp. Chem., 29, 1450-1459(2008).

    [54] M. Ferrero, M. Rérat, R. Orlando, R. Dovesi. Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects. J. Chem. Phys., 128, 014110(2008).

    [55] R. Orlando, V. Lacivita, R. Bast, K. Ruud. Calculation of the first static hyperpolarizability tensor of three-dimensional periodic compounds with a local basis set: a comparison of LDA, PBE, PBE0, B3LYP, and HF results. J. Chem. Phys., 132, 244106(2010).

    [56] M. Ferrero, M. Rérat, B. Kirtman, R. Dovesi. Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. J. Chem. Phys., 129, 244110(2008).

    [57] L. Valenzano, F. J. Torres, K. Doll, F. Pascale, C. M. Zicovich-Wilson, R. Dovesi. Ab initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite. Zeitschrift für Physikalische Chemie, 220, 893-912(2006).

    [58] T. Lu, F. Chen. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem., 33, 580-592(2018).

    [59] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus. Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model., 47, 1045-1052(2007).

    CLP Journals

    [1] Yunning Lu, Zeyang Liao, Fu-Li Li, Xue-Hua Wang. Integrable high-efficiency generation of three-photon entangled states by a single incident photon[J]. Photonics Research, 2022, 10(2): 389

    [2] Guoping Lin, Tang Sun. Mode crossing induced soliton frequency comb generation in high-Q yttria-stabilized zirconia crystalline optical microresonators[J]. Photonics Research, 2022, 10(3): 731

    Guillaume Marcaud, Samuel Serna, Karamanis Panaghiotis, Carlos Alonso-Ramos, Xavier Le Roux, Mathias Berciano, Thomas Maroutian, Guillaume Agnus, Pascal Aubert, Arnaud Jollivet, Alicia Ruiz-Caridad, Ludovic Largeau, Nathalie Isac, Eric Cassan, Sylvia Matzen, Nicolas Dubreuil, Michel Rérat, Philippe Lecoeur, Laurent Vivien. Third-order nonlinear optical susceptibility of crystalline oxide yttria-stabilized zirconia[J]. Photonics Research, 2020, 8(2): 110
    Download Citation