• Journal of Semiconductors
  • Vol. 42, Issue 11, 112001 (2021)
Yifan Wang1、2, Xuanze Li1、2, Pei Liu1、2, Jing Xia1、2, and Xiangmin Meng1、2
Author Affiliations
  • 1Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/42/11/112001 Cite this Article
    Yifan Wang, Xuanze Li, Pei Liu, Jing Xia, Xiangmin Meng. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection[J]. Journal of Semiconductors, 2021, 42(11): 112001 Copy Citation Text show less
    References

    [1] J J Zhao, H H Li, Y C Qiu et al. Programmable single-crystalline PbI2 microplate arrays and their organic/inorganic heterojunctions. Adv Funct Mater, 30, 2003631(2020).

    [2] X H Xia, J P Tu, Y Q Zhang et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano, 6, 5531(2012).

    [3] G Iannaccone, F Bonaccorso, L Colombo et al. Quantum engineering of transistors based on 2D materials heterostructures. Nat Nanotechnol, 13, 183(2018).

    [4] H Zhang, X T Jiang, Y L Wang et al. Preface to the special issue on monoelemental 2D semiconducting materials and their applications. J Semicond, 41, 080101(2020).

    [5] J Yuan, T Sun, Z X Hu et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl Mater Interfaces, 10, 40614(2018).

    [6] F Capasso. Band-gap engineering: From physics and materials to new semiconductor devices. Science, 235, 172(1987).

    [7] J S Zhou, J H Yang, Z M Wei. Photodetectors based on 2D material/Si heterostructure. J Semicond, 41, 080401(2020).

    [8] H Kroemer. A proposed class of hetero-junction injection lasers. Proc IEEE, 51, 1782(1963).

    [9] M Feng, N Holonyak, R Chan. Quantum-well-base heterojunction bipolar light-emitting transistor. Appl Phys Lett, 84, 1952(2004).

    [10] K Lee, J Li, L Cheng et al. Sub-picosecond carrier dynamics induced by efficient charge transfer in MoTe2/WTe2 van der Waals heterostructures. ACS Nano, 13, 9587(2019).

    [11] P Zhang, Y W Zhang, Y Wei et al. Contact engineering for two-dimensional semiconductors. J Semicond, 41, 071901(2020).

    [12] X D Duan, C Wang, J C Shaw et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol, 9, 1024(2014).

    [13] P Caroff, J B Wagner, K A Dick et al. High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small, 4, 878(2008).

    [14] Y Liu, Y Huang, X F Duan. Van der Waals integration before and beyond two-dimensional materials. Nature, 567, 323(2019).

    [15] D Jariwala, T J Marks, M C Hersam. Mixed-dimensional van der Waals heterostructures. Nat Mater, 16, 170(2017).

    [16] S Y Zhou, B Peng. Non-volatile optical memory in vertical van der Waals heterostructures. J Semicond, 41, 072906(2020).

    [17] F Qian, Y Li, S Gradečak et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater, 7, 701(2008).

    [18] A Walsh, D O Scanlon, S Y Chen et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew Chem Int Ed, 54, 1791(2015).

    [19] Y Gao, L Y Zhao, Q Y Shang et al. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J Semicond, 40, 052201(2019).

    [20] H M Chen, W Huang, T J Marks et al. Recent advances in multi-layer light-emitting heterostructure transistors. Small, 17, 2007661(2021).

    [21] N J Huo, J Kang, Z M Wei et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater, 24, 7025(2014).

    [22] Y P Wang, Z Z Chen, F Deschler et al. Epitaxial halide perovskite lateral double heterostructure. ACS Nano, 11, 3355(2017).

    [23] S J Yang, K L Liu, W Han et al. Salt-assisted growth of P-type Cu9S5 nanoflakes for P-N heterojunction photodetectors with high responsivity. Adv Funct Mater, 30, 1908382(2020).

    [24] J G Feng, X X Yan, Y Liu et al. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv Mater, 29, 1605993(2017).

    [25] Y F Wang, F Yang, X Z Li et al. Epitaxial growth of large-scale orthorhombic CsPbBr3 perovskite thin films with anisotropic photoresponse property. Adv Funct Mater, 29, 1904913(2019).

    [26] X L Zhang, B Xu, J B Zhang et al. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv Funct Mater, 26, 4595(2016).

    [27] C Liu, W Z Li, C L Zhang et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J Am Chem Soc, 140, 3825(2018).

    [28] L Huang, N J Huo, Z Q Zheng et al. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: Band alignment investigation for the case of CsPbBr3/MoSe2. J Semicond, 41, 052206(2020).

    [29] Q W Zhou, J L Duan, X Y Yang et al. Interfacial strain release from the WS2/CsPbBr3 van der waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew Chem Int Ed, 59, 21997(2020).

    [30] J Jiang, X Sun, X C Chen et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat Commun, 10, 4145(2019).

    [31] X F Song, X H Liu, D J Yu et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces, 10, 2801(2018).

    [32] N J Huo, Y J Yang, J B Li. Optoelectronics based on 2D TMDs and heterostructures. J Semicond, 38, 031002(2017).

    [33] Z J Li, E Hofman, J Li et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv Funct Mater, 28, 1704288(2018).

    [34] Q X Zhong, M H Cao, H C Hu et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano, 12, 8579(2018).

    [35] C Fan, X Xu, K Yang et al. Controllable epitaxial growth of core-shell PbSe@CsPbBr3 wire heterostructures. Adv Mater, 30, 1804707(2018).

    [36] Q B Liu, L H Liang, H Z Shen et al. Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection. Nano Res, 14, 1(2021).

    [37] Z Wei, A Perumal, R Su et al. Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 8, 18021(2016).

    [38] X J Zhang, X X Wu, X Y Liu et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J Am Chem Soc, 142, 4464(2020).

    [39] Y D Shen, R J Chen, X C Yu et al. Gibbs-Thomson effect in planar nanowires: Orientation and doping modulated growth. Nano Lett, 16, 4158(2016).

    [40] F Wang, Z X Wang, K Xu et al. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance. Nano Lett, 15, 7558(2015).

    [41] Y H He, L Matei, H J Jung et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat Commun, 9, 1609(2018).

    [42] X L Hu, H Zhou, Z Y Jiang et al. Direct vapor growth of perovskite CsPbBr3 nanoplate electroluminescence devices. ACS Nano, 11, 9869(2017).

    [43] Y Pak, S Mitra, N Alaal et al. Dark-current reduction accompanied photocurrent enhancement in p-type MnO quantum-dot decorated n-type 2D-MoS2-based photodetector. Appl Phys Lett, 116, 112102(2020).

    [44] Y Wen, Q S Wang, L Yin et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv Mater, 28, 8051(2016).

    Yifan Wang, Xuanze Li, Pei Liu, Jing Xia, Xiangmin Meng. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection[J]. Journal of Semiconductors, 2021, 42(11): 112001
    Download Citation