• Chinese Optics Letters
  • Vol. 16, Issue 4, 040603 (2018)
Álvaro Morales1、*, Idelfonso Tafur Monroy1, Fredrik Nordwall2, and Tommi Sørensen3
Author Affiliations
  • 1Department of Electrical Engineering, Electro-Optical Communications, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
  • 2Tektronix AB, Kista, Sweden
  • 3GoMeasure ApS, Albertslund, Denmark
  • show less
    DOI: 10.3788/COL201816.040603 Cite this Article Set citation alerts
    Álvaro Morales, Idelfonso Tafur Monroy, Fredrik Nordwall, Tommi Sørensen. 50 GHz optical true time delay beamforming in hybrid optical/mm-wave access networks with multi-core optical fiber distribution[J]. Chinese Optics Letters, 2018, 16(4): 040603 Copy Citation Text show less
    Hybrid optical/mm-wave access network with beamforming capabilities. CO, central office; MCF, multi-core fiber; RAU, radio access unit.
    Fig. 1. Hybrid optical/mm-wave access network with beamforming capabilities. CO, central office; MCF, multi-core fiber; RAU, radio access unit.
    Principle of optical true time delay beamforming in a linear phased antenna array.
    Fig. 2. Principle of optical true time delay beamforming in a linear phased antenna array.
    Experimental setup. CO, central office; RAU, radio access unit; CW, continuous wave; PC, polarization controller; VSG, vector signal generator; RF, radio frequency; MZM, Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; AWG, arbitrary waveform generator; NRZ, non-return-to-zero; VOA, variable optical attenuator; OTDL, optical time delay line; MCF, multi-core fiber; PD, photodiode. (a) Beamformer network. (b) PD array. (c) Captured signals.
    Fig. 3. Experimental setup. CO, central office; RAU, radio access unit; CW, continuous wave; PC, polarization controller; VSG, vector signal generator; RF, radio frequency; MZM, Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; AWG, arbitrary waveform generator; NRZ, non-return-to-zero; VOA, variable optical attenuator; OTDL, optical time delay line; MCF, multi-core fiber; PD, photodiode. (a) Beamformer network. (b) PD array. (c) Captured signals.
    Experimental demonstration of proposed OTTD beamforming scheme in four scenarios: Δτ=−1/4fc, Δτ=0, Δτ=1/4fc, and Δτ=1/2fc.
    Fig. 4. Experimental demonstration of proposed OTTD beamforming scheme in four scenarios: Δτ=1/4fc, Δτ=0, Δτ=1/4fc, and Δτ=1/2fc.
    Delay variation with time in four scenarios: Δτ=−1/4fc, τ=0, Δτ=1/4fc, and Δτ=1/2fc.
    Fig. 5. Delay variation with time in four scenarios: Δτ=1/4fc, τ=0, Δτ=1/4fc, and Δτ=1/2fc.
    Eye diagrams of demodulated signals.
    Fig. 6. Eye diagrams of demodulated signals.
    Core0123456
    Insertion loss (dB)3.15.34.03.93.84.74.0
    Cross-talk (dB)32.034.736.237.634.832.235.0
    Table 1. Measured Insertion Loss and Cross-talk at 1550 nm for the Seven-core Fiber
    Beamforming Network Delay (ps)Average Delay (ps)Absolute ErrorStandard DeviationMaximum Deviation
    55.180.18 ps/1.03°0.11 ps/0.63°0.48 ps/2.75°
    00.100.10 ps/0.57°0.14 ps/0.80°0.40 ps/2.29°
    54.660.34 ps/1.95°0.12 ps/0.69°0.46 ps/2.64°
    1010.200.20 ps/1.15°0.13 ps/0.74°0.50 ps/2.87°
    Table 2. Measured Results of Delay Between Two Channels
    Álvaro Morales, Idelfonso Tafur Monroy, Fredrik Nordwall, Tommi Sørensen. 50 GHz optical true time delay beamforming in hybrid optical/mm-wave access networks with multi-core optical fiber distribution[J]. Chinese Optics Letters, 2018, 16(4): 040603
    Download Citation