[1] S. McGee, J. Mirkovic, V. Mardirossian, A. Elackattu, C. C. Yu, S. Kabani, G. Gallagher, R. Pistey, L. Galindo, K. Badizadegan, Z. Wang, R. Dasari, M. S. Feld, G. Grillone, “Model-based spectroscopic analysis of the oral cavity: Impact of anatomy,” J. Biomed. Opt. 13(6), 064034 (2008).
[2] W. Zheng, Y. Wu, D. L. Li, J. Y. Q., “Autofluorescence of epithelial tissue: Single photon versus two-photon excitations,” Biomed. Opt. 13, 15410– 208 (2008).
[3] K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, W. W. Webb, “Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis,” Science 305(5680), 99–103 (2004).
[4] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria,” J. Biol. Chem. 221(1), 477–489 (1956).
[5] S. Nioka, K. McCully, G. McClellan, J. Patk, B. Chance, “Oxygen transport and intracellular bioenergetics on stimulated cat skeletal muscle,” Adv. Exp. Med. Biol. 510, 267–272 (2003).
[6] B. Yerby, R. Deacon, V. Beaulieu, J. Liang, J. Gao, D. Laurent, “Insulin-stimulated mitochondrial adenosine triphosphate synthesis is blunted in skeletal muscles of high fat fed rats,” Metabolism 57(11), 1584–1590 (2008).
[7] M. A. Abdul-Ghani, R. A. DeFronzo, “Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus,” Curr. Diab. Rep. 8(3), 173–178 (2008).
[8] M. A. Abdul-Ghani, F. L. Muller, Y. Liu, A. O. Chavez, B. Balas, P. Zuo, Z. Chang, D. Tripathy, R. Jani, M. Molina-Carrion, A. Monroy, F. Folli, R. H. Van, R. A. DeFronzo, “Deleterious action of FA metabolites on ATP synthesis: Possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance,” Am. J. Physiol. Endocrinol. Metab. 295, E678–85 (2008).
[9] M. Bassami, S. Ahmadizad, D. Doran, D. P. MacLaren, “Effects of exercise intensity and duration on fat metabolism in trained and untrained older males,” Eur. J. Appl. Physiol. 101(4), 525–532 (2007).
[10] S. T. Henderson, “Ketone bodies as a therapeutic for Alzheimer’s disease,” Neurotherapeutics 5(3), 470– 480 (2008).
[11] C. M. Studzinski, W. A. MacKay, T. L. Beckett, S. T. Henderson, M. P. Murphy, P. G. Sullivan, W. M. Burnham, “Induction of ketosis may improve mitochondrial function and decrease steady-state amyloid-beta precursor protein (APP) levels in the aged dog,” Brain Res. 1226, 209–217 (2008).
[12] M. A. Puchowicz, J. L. Zechel, J. Valerio, D. S. Emancipator, K. Xu, S. Pundik, J. C. LaManna, “Lust, W. D. Neuroprotection in diet-induced ketotic rat brain after focal ischemia,” J. Cereb. Blood Flow Metab. 28(12), 1907–1916 (2008).
[13] W. T. Plunet, F. Streijger, C. K. Lam, J. H. Lee, J. Liu,W. Tetzlaff, “Dietary restriction started after spinal cord injury improves functional recovery,” Exp. Neurol. 213, 28–35 (2008).
[14] A. L. Hartman,M. Lyle,M. A. Rogawski,M. Gasior, “Efficacy of the ketogenic diet in the 6-Hz seizure test,” Epilepsia. 49(2), 334–339 (2008).
[15] L. T. Zhang, Y. M. Yao, J. Q. Lu, X. J. Yan, Y. Yu, Z. Y. Sheng, “Sodium butyrate prevents lethality of severe sepsis in rats,” Shock. 27(6), 672–677 (2007).
[16] N. Grinberg, S. Elazar, I. Rosenshine, N. Y. Shpigel, “Beta-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli,” Infect. Immun. 76, 2802–2807 (2008).
[17] T. Feldkamp, A. Kribben, N. F. Roeser, R. A. Senter, S. Kemner, M. A. Venkatachalam, I. Nissim, J.M.Weinberg, “Preservation of Complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules,” Am. J. Physiol. Renal. Physiol. 286, F749–F759 (2004).
[18] R. L. Veech, J. W. R. Lawson, N. W. Cornell, H. A. Krebs, “Cytosolic phosphorylation potential,” J. Biol. Chem. 254, 6538–6547 (1979).
[19] B. Chance, J. R. Williamson, D. Jamieson, B. Schoener, “Properties of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart,” Biochem. Zeit. 341, 357–377 (1965).
[20] B. Chance, B. Schoener, “A correlation of absorption and fluorescence changes in ischemia of the rat liver, in vivo,” Biochem. Zeit. 341, 340–345 (1965).
[21] B. Chance, B. Schoener, F. Schindler, “The intracellular oxidation-reduction state,” In Oxygen in the Animal Organism (Dickens, F. N. ed.), Pergammon Press, London, pp. 367–388 (1964).
[22] B. Chance, B. Schoener, R. Oshino, F. Itsak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
[23] B. Quistorff, B. Chance, A. Hunding, “An experimental model of the Krogh Tissue Cylinder: Two dimensional quantitation of the oxygen gradient. In Oxygen Transport to Tissue — III (Silver, I. E., Bucher, H., eds.),” Plenum Publishing Corp, NY, pp. 127–133 (1978).
[24] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, “Calibration of CCD-based redox imaging for biological tissues,” Proc. SPIE 7262, 72622F (2009).
[25] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, “Calibration of redox scanning for tissue samples,” Proc. SPIE 7174, 71742F (2009).
[26] K. Sato, Y. Kashiwaya, C. A. Keon, N. Tsuchiya, M. T. King, G. K. Radda, B. Chance, K. Clarke, R. L. Veech, “Insulin, ketone bodies, and mitochondrial energy transduction,” FASEB J. 9, 651–658 (1995).
[27] J. V. Rocheleau, W. S. Head, D. W. Piston, “Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response,” J. Biol. Chem. 79, 31780–7 (2004).
[28] N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richards- Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–7 (1994).
[29] I. Georgakoudi, B. C. Jacobson, M. G. M¨uller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[30] B. Chance, “The kinetics of flavoprotein and pyridine nucleotide oxidation in cardiac mitochondria in the presence of calcium,” FEBS Lett. 26(1), 315–319 (1972).
[31] J. V. Rocheleau, W. S. Head, D. W. Piston, “Quantitative NAD(P)H/flavoprotein auto-fluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response,” J. Biol. Chem. 279(30), 31780–7 (2004).
[32] B. Chance, “Enzymes in action in living cells: The steady state of reduced pyridine nucleotide,” The Harvey Lectures Series, New York Academic Press, Inc., pp. 145–175 (1955).
[33] E. C. Slater, “Keilin, cytochrome, and the respiratory chain,” J. Biol. Chem. 278, 16455–16461 (2003).
[34] O. Warburg, W. Christian, Bio. Chem. Zeit. 287, 291–328 (1936).
[35] A. Mayevsky, B. Chance, “Oxidation-reduction states of NADH in vivo: From animals to clinical use,” Mitochondrion. 7(5), 330–9 (2007).
[36] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization,” J. Biol. Chem. 217(1), 383–393 (1955).
[37] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. II. Difference spectra,” J. Biol. Chem. 217(1), 395–407 (1955).
[38] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. III. The steady state,” J. Biol. Chem. 217(1), 409–427 (1955).
[39] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain,” J. Biol. Chem. 217(1), 429–438 (1955).
[40] B. Chance, M. T. Dait, C. Chang, T. Hamaoka, F. Hagerman, “Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).
[41] B. Chance, H. Baltscheffsky, “Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide,” J. Biol. Chem. 233(3), 736–739 (1958).
[42] B. Chance, G. Hollunger, “Inhibition of electron and energy transfer in mitochondria. IV. Inhibition of energy-linked diphosphopyridine nucleotide reduction by uncoupling agents,” J. Biol. Chem. 278, 445–448 (1963).
[43] B. Chance, “The energy-linked reaction of calcium with mitochondria,” J. Biol. Chem. 240(6), 2729– 2748 (1965).