[1] J Wu, Y Xu, Z Feng, X Zheng. Automatically identifying fusion events between GLUT4 storage vesicles and the plasma membrane in TIRF microscopy image sequences. Comput. Math. Methods Med, 2015, 610482(2015).
[2] J. G Burchfield, J. A Lopez, K Mele, P Vallotton, W. E Hughes. Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy. Traffic, 11, 429-439(2010).
[3] E Moen, D Bannon, T Kudo, W Graf, M Covert, D Van Valen. Deep learning for cellular image analysis. Nat. Methods, 16, 1233-1246(2019).
[4] Z Liu, L Jin, J Chen, Q Fang, S Ablameyko, Z Yin, Y Xu. A survey on applications of deep learning in microscopy image analysis. Comput. Biol. Med, 134, 104523(2021).
[5] G Litjens, T Kooi, B. E Bejnordi, A. A. A Setio, F Ciompi, M Ghafoorian, J van der Laak, B van Ginneken, C. I Sanchez. A survey on deep learning in medical image analysis. Med. Image Anal, 42, 60-88(2017).
[6] Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 521, 436-444(2015).
[7] E Meijering. A bird’s-eye view of deep learning in bioimage analysis. Comput. Struct. Biotechnol. J, 18, 2312-2325(2020).
[8] X Fuyong, X Yuanpu, S Hai, L Fujun, Y Lin. Deep learning in microscopy image analysis: A survey. IEEE Trans. Neural Netw. Learn. Syst, 29, 4550-4568(2018).
[9] A Bewley, Z Ge, L Ott, F Ramos, B Upcroft. Simple online and realtime tracking. 2016 IEEE International Conference on Image Processing (ICIP), 3464-3468(2016).
[10] G Ciaparrone, F Luque Sánchez, S Tabik, L Troiano, R Tagliaferri, F Herrera. Deep learning in video multi-object tracking: A survey. Neurocomputing, 381, 61-88(2020).
[11] S Cooper, A. R Barr, R Glen, C Bakal. NucliTrack: An integrated nuclei tracking application. Bioinformatics, 33, 3320-3322(2017).
[12] P Yuan, A Rezvan, X Li, N Varadarajan, H Van Nguyen. Phasetime: Deep learning approach to detect nuclei in time lapse phase images. J. Clin. Med, 8, 1159(2019).
[13] A Matov, K Applegate, P Kumar, C Thoma, W Krek, G Danuser, T Wittmann. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat. Methods, 7, 761-768(2010).
[14] S Masoudi, A Razi, C. H. G Wright, J. C Gatlin, U Bagci. Instance-level microtubule tracking. IEEE Trans. Med. Imaging, 39, 2061-2075(2020).
[15] M Liebel, J. O Arroyo, V. S Beltrán, J Osmond, A Jo, H Lee, R Quidant, N. F van Hulst. 3D tracking of extracellular vesicles by holographic fluorescence imaging. Sci. Adv, 6, eabc2508(2020).
[16] W Zhang, J Gu, Y Li, W Shan, Y Xu, Y Chen. Single-vesicle tracking reveals the potential correlation of the movement of cell-bound membrane vesicles (CBMVs) with cell migration. Biochim. Biophys. Acta, Mol. Cell Res, 1867, 118804(2020).
[17] P. J Kunz, L Barthel, V Meyer, R King. Vesicle transport and growth dynamics in Aspergillus niger: Microscale modeling of secretory vesicle flow and centerline extraction from confocal fluorescent data. Biotechnol. Bioeng, 117, 2875-2886(2020).
[18] J. M Newby, A. M Schaefer, P. T Lee, M. G Forest, S. K Lai. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D. Proc. Natl. Acad. Sci. USA, 115, 9026-9031(2018).
[19] P Billoir, S Qian. Simultaneous pattern recognition and track fitting by the Kalman filtering method. Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip, 294, 219-228(1990).
[20] L Jin, F Zhao, W Lin, X Zhou, C Kuang, A Nedzved, S Ablameyko, X Liu, Y Xu. Development of fan-shaped tracker for single particle tracking. Microsc. Res. Tech, 83, 1056-1065(2020).
[21] O Ronneberger, P Fischer, T Brox. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. PT III, 234-241(2015).
[22] M Neumann, D Gabel. Simple method for reduction of autofluorescence in fluorescence microscopy. J. Histochem. Cytochem, 50, 437-439(2002).
[23] I. T Young. Quantitative microscopy. IEEE Eng. Med. Biol. Mag, 15, 59-66(1996).
[24] G. B Airy. I. On the diffraction of an annular aperture: To the editors of the philosophical magazine and journal. Lond. Edinb. Philos. Mag. J. Sci, 18, 1-10(1841).
[25] E Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: I. Die Construction von Mikroskopen auf Grund der Theorie. Arch. Mikr. Anat, 9, 413-418(1873).
[26] L Rayleigh. On the theory of optical images, with special reference to the microscope. J. R. Microsc. Soc, 23, 474-482(1903).
[27] L Jin, F Zhao, W Lin, X Zhou, C Kuang, L Xu, S Ablameyko, Y Xu. Fan-shaped tracker (FsT) for particle trajectory reconstruction. Optics in Health Care and Biomedical Optics IX, 11190, 111900Y(2019).
[28] K Weiss, T. M Khoshgoftaar, D Wang. A survey of transfer learning. J. Big Data, 3, 1-40(2016).
[29] J Wu. Subcellular spot detection methods for fluorescences microscopic images. Chin. J. Biomed. Eng, 31, 925-933(2012).
[30] M Tang, Y Kaymaz, B. L Logeman, S Eichhorn, Z. S Liang, C Dulac, T. B Sackton. Evaluating single-cell cluster stability using the Jaccard similarity index. Bioinformatics, 37, 2212-2214(2021).
[31] N Joseph, C Kolluru, B. A. M Benetz, H. J Menegay, J. H Lass, D. L Wilson. Quantitative and qualitative evaluation of deep learning automatic segmentations of corneal endothelial cell images of reduced image quality obtained following cornea transplant. J. Med. Imaging, 7, 014503(2020).
[32] J. C Caicedo et al. Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. Cytometry A, 95, 952-965(2019).