• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 72501 (2018)
Wu Renglai1、*, Quan Jun1, Yang Xiyuan1, Xiao Shifa1, and Xue Hongjie2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.072501 Cite this Article Set citation alerts
    Wu Renglai, Quan Jun, Yang Xiyuan, Xiao Shifa, Xue Hongjie. Excitation and Modulation Properties of Dipole and Quadrupole Modes of Plasmon in One-Dimensional System[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72501 Copy Citation Text show less
    References

    [1] Shynkarenko O V, Kravchenko S A. Surface plasmon resonance sensors: Methods of surface functionalization and sensitivity enhancement[J]. Theoretical & Experimental Chemistry, 2015, 51(5): 273-292.

    [2] Baiad M D, Kashyap R. Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings[J]. Optics Letters, 2015, 40(1): 115-118.

    [3] Heidarzadeh H. Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating[J]. Applied Optics, 2016, 55(7): 1779-1785.

    [4] Zhou Z Q, Wang L X, Shi W, et al. A synergetic application of surface plasmon and field effect to improve Si solar cell performance[J]. Nanotechnology, 2016, 27(14): 145203.

    [5] Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

    [6] Dou X J, Min C J, Zhang Y Q, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 1026004.

    [7] Shen J F, Zhang C J, Zhang Y Q, et al. Study on novel nano-heating source based on plasmonic nanotweezer[J]. Acta Optica Sinica, 2014, 34(9): 0924001.

    [8] Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: From beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050002.

    [9] Yang X, Zhai F, Hu H, et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der Waals heterostructures[J]. Advanced Materials, 2016, 28(15): 2931-2938.

    [10] Wang P, Tang C, Yan Z, et al. Graphene-based superlens for subwavelength optical imaging by graphene plasmon resonances[J]. Plasmonics, 2016, 11(2): 515-522.

    [11] Shi Z D, Zhao H F, Liu J L, et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 2015, 35(2): 0213001.

    [12] Feng D D, Li Z Q, Yue Z, et al. Hybrid surface plasmonic nanolaser with three dimensional optical field confinement[J]. Chinese Journal of Lasers, 2017, 44(10): 1001005.

    [13] Grasso L, Wyss R, Weidenauer L, et al. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy[J]. Analytical & Bioanalytical Chemistry, 2015, 407(18): 5425-5432.

    [14] Chen C W, Chan Y C, Hsiao M, et al. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32108-32119.

    [15] Stojanovi I, Hal Y V, Velden T J, et al. Detection of apoptosis in cancer cell lines using surface plasmon resonance imaging[J]. Sensing and Bio-Sensing Research, 2016, 7: 48-54.

    [16] Wang M, Cao M, Chen X, et al. Subradiant plasmon modes in multilayer metal-dielectric nanoshells[J]. Journal of Physical Chemistry C, 2016, 115(43): 20920-20925.

    [17] Chu M W, Myroshnychenko V, Chen C H, et al. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam[J]. Nano Letters, 2009, 9(1): 399-404.

    [18] Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer[J]. Nano Letters, 2009, 9(2): 887-891.

    [19] Kuisma M, Sakko A, Rossi T P, et al. Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations[J]. Physical Review B, 2015, 91(11): 115431.

    [20] Saito H, Yamamoto N. Size dependence of bandgaps in a two-dimensional plasmonic crystal with a hexagonal lattice[J]. Optics Express, 2015, 23(3): 2524-2540.

    [21] Baida H, Billaud P, Marhaba S, et al. Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO2 nanoparticles[J]. Nano Letters, 2012, 9(10): 3463-3469.

    [22] Ma W Y, Yang H, Hilton J P, et al. A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures[J]. Optics Express, 2010, 18(2): 843-853.

    [23] Wei H, Zhang S, Tian X, et al. Highly tunable propagating surface plasmons on supported silver nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(12): 4494-4499.

    [24] Yuan Z, Gao S. Plasmon resonances in linear atomic chains: Free-electron behavior and anisotropic screening of electrons[J]. Physical Review B, 2008, 78(23): 235413-235422.

    [25] Cassidy A, Grigorenko I, Haas S. Formation of collective excitations in quasi-one-dimensional metallic nanostructures: Size and density dependence[J]. Physical Review B, 2008, 77(24): 245404.

    [26] Muniz R A, Haas S, Levi A F J, et al. Plasmonic excitations in tight-binding nanostructures[J]. Physical Review B, 2009, 80(4): 1132-1136.

    [27] Solis D J, Willingham B, Nauert S L, et al. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes[J]. Nano Letters, 2012, 12(3): 1349-1353.

    [28] Xin W, Wu R L, Xue H J, et al. Plasmonic excitations in mesoscopic-sized atomic chains: A tight-binding model[J]. Acta Physica Sinica, 2013, 62(17): 177301.

    [29] Wu R L, Xiao S F, Xue H J, et al. Quantization of plasmon in two-dimensional square quantum dot system[J]. Acta Physica Sinica, 2017, 66(22): 227301.

    [30] Zhu C, Liu H, Wang S M, et al. Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain[J]. Optics Express, 2010, 18(25): 26268-26273.

    [31] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

    [32] Liu N, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 2010, 10(4): 1103-1107.

    [33] Wei Q H, Su K H, Durant S A, et al. Plasmon resonance of finite one-dimensional au nanoparticle chains[J]. Nano Letters, 2004, 4(6): 1067-1071.

    [34] Aruga T, Tochihara H, Murata Y. Measurement of overlayer-plasmon dispersion in k chains adsorbed on Si(001) 2×1[J]. Physical Review Letters, 1984, 53(4): 372-375.

    [35] Sarma S D, Lai W. Screening and elementary excitations in narrow-channel semiconductor microstructures[J]. Physical Review B, 1985, 32(32): 1401-1404.

    Wu Renglai, Quan Jun, Yang Xiyuan, Xiao Shifa, Xue Hongjie. Excitation and Modulation Properties of Dipole and Quadrupole Modes of Plasmon in One-Dimensional System[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72501
    Download Citation