• Laser & Optoelectronics Progress
  • Vol. 55, Issue 11, 110003 (2018)
Jianjian Wang* and Yongqian Li
Author Affiliations
  • Department of Electronics and Communication Engineering, North China Electric Power University, Baoding, Hebei 071003, China
  • show less
    DOI: 10.3788/LOP55.110003 Cite this Article Set citation alerts
    Jianjian Wang, Yongqian Li. Review of Methods for Improving Performance of Brillouin Optical Time-Domain Analysis System[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110003 Copy Citation Text show less
    References

    [1] Horiguchi T, Shimizu K, Kurashima T et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 13, 1296-1302(1995). http://www.emeraldinsight.com/servlet/linkout?suffix=b7&dbid=16&doi=10.1108%2F02602280910936237&key=10.1109%2F50.400684

    [2] Zhou Z C, Wang X L, Su R T et al. Application of distributed fiber sensing in fiber lasers[J]. Laser & Optoelectronics Progress, 53, 080006(2016).

    [3] Boyd R W[M]. Nonlinear Optics(2007).

    [4] Kurashima T, Horiguchi T, Izumita Het al. Brillouin optical-fiber time domain reflectometry[J]. E76-, B, 382-390(1993).

    [5] Cho Y T, Alahbabi M, Gunning M J et al. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification[J]. Optics Letters, 28, 1651-1653(2003). http://www.ncbi.nlm.nih.gov/pubmed/13677525

    [6] Cho Y T, Alahbabi M N, Gunning M J et al. Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification[J]. Measurement Science and Technology, 15, 1548-1552(2004). http://adsabs.harvard.edu/abs/2004MeScT..15.1548C

    [7] Cho Y T, Alahbabi M, Brambilla G et al. Brillouin based OTDR with measurement range of 85 km using combined EDFA and Raman amplification. [C]//Conference on Laser and Electro-Optics, May 16-21, 2004, San Francisco. New York: IEEE, 8303939(2004).

    [8] Rodriguez-Barrios F, Martin-Lopez S, Carrasco-Sanz A et al. Distributed Brillouin fiber sensor assisted by first-order Raman amplification[J]. Journal of Lightwave Technology, 28, 2162-2172(2010). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-28-15-2162

    [9] Martin-Lopez S, Alcon-Camas M, Rodriguez F et al. Brillouin optical time-domain analysis assisted by second-order Raman amplification[J]. Optics Express, 18, 18769-18778(2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-18-18769

    [10] Soto M A, Bolognini G, Di Pasquale F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification[J]. Optics Express, 19, 4444-4457(2011). http://www.ncbi.nlm.nih.gov/pubmed/21369276

    [11] Jia X H, Rao Y J, Chang L et al. Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: theoretical and experimental investigation[J]. Journal of Lightwave Technology, 28, 1624-1630(2010). http://ieeexplore.ieee.org/document/5440945/

    [12] Zhang C, Rao Y J, Jia X H et al. Brillouin optical time domain analyzer based on bidirectional Raman amplification[J]. Acta Physica Sinica, 59, 5523-5527(2010).

    [13] Rao Y J, Chang L, Jia X H et al. Brillouin optical time domain analysis system based on Raman amplification and semiconductor optical amplifier[J]. Journal of University of Electronic Science and Technology of China, 41, 621-625(2012).

    [14] Jia X H, Rao Y J, Wang Z N et al. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification[J]. High Power Laser and Particle Beams, 24, 1667-1671(2012).

    [15] Jiang Y, Jia X H, Wang Z N et al. 100 km Brillouin optical time domain analyzer based on radom distributed feedback fiber laser pumping[J]. Journal of Optoelectronics·Laser, 24, 45-49(2013).

    [16] Qin Z J, Liang G L, Zhang W T et al. Negative effects of distributed Raman amplification on long distance Brillouin optical time-domain analyzer[J]. Acta Optica Sinica, 35, s206002(2015).

    [17] Soto M A, Bolognini G, Di Pasquale F, temperature sensing using BOTDA et al. Vienna. New York: IEEE, 2009, 2009-supplement.(2009).

    [18] Soto M A, Bolognini G, Di Pasquale F et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 35, 259-261(2010). http://europepmc.org/abstract/med/20081987

    [19] Soto M A, Bolognini G, Di Pasquale F et al. Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques[J]. Measurement Science and Technology, 21, 094024(2010). http://adsabs.harvard.edu/abs/2010MeScT..21i4024S

    [20] Soto M A, Le F S, Thévenaz L. Bipolar pulse coding for enhanced in Brillouin distributed optical fiber sensors[J]. Proceeding of SPIE, 8421, 84219Y(2012).

    [21] Soto M A, Le F S, Thévenaz L. Bipolar optical pulse coding for performance enhancement in BOTDA sensors[J]. Optics Express, 21, 16390-16397(2013). http://www.ncbi.nlm.nih.gov/pubmed/23938490

    [22] Soto M A, Bolognini G, Di Pasquale F. Analysis of pulse modulation format in coded BOTDA sensors[J]. Optics Express, 18, 14878-14892(2010). http://europepmc.org/abstract/med/20639975

    [23] Soto M A, Bolognini G, Di Pasquale F. Long-range Simplex-coded BOTDA sensor over 120 km distance employing optical preamplification[J]. Optics Letters, 36, 232-234(2011). http://europepmc.org/abstract/med/21263510

    [24] Jia X H, Rao Y J, Deng K et al. Experimental demonstration on 2.5-m spatial resolution and 1 ℃ temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding[J]. IEEE Photonics Technology Letters, 23, 435-437(2011).

    [25] Taki M, Soto M A, Di Pasquale F et al. Long-range BOTDA sensing using optical pulse coding and single source bi-directional distributed Raman amplification[J]. Proceedings of IEEE Sensors, 382-385(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6127160

    [26] Bao X, Brown A. DeMerchant M, et al. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses[J]. Optics Letters, 24, 510-512(1999). http://www.opticsinfobase.org/ol/abstract.cfm?id=37229

    [27] Lecoeuche V, Webb D J, Pannell C N et al. Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time[J]. Optics Letters, 25, 156-158(2000). http://www.ncbi.nlm.nih.gov/pubmed/18059814

    [28] Li W H, Bao X Y, Li Y et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 16, 21616-21625(2008). http://www.ncbi.nlm.nih.gov/pubmed/19104593

    [29] Li Y, Bao X Y, Dong Y K et al. A novel distributed Brillouin sensor based on optical differential parametric amplification[J]. Journal of Lightwave Technology, 28, 2621-2626(2010). http://www.opticsinfobase.org/abstract.cfm?uri=jlt-28-18-2621

    [30] Horiguchi T, Muroi R, Iwasaka A et al. BOTDA utilizing phase-shift pulse[J]. The IEICE transactions on communications B, 91, 207-216(2008).

    [31] Liang H, Li W H, Linze N et al. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses[J]. Optics Letters, 35, 1503-1505(2010). http://www.ncbi.nlm.nih.gov/pubmed/20479789

    [32] Soto M A, Taki M, Bolognini G et al. Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification[J]. Optics Express, 20, 6860-6869(2012). http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-7-6860

    [33] Taki M, Bolognini G, Di Pasquale F. Raman-assisted DPP-BOTDA sensor employing Simplex coding with sub-meter scale spatial resolution over 93 km standard SMF[J]. Proceeding of SPIE, 8421, 84219M(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.970299

    [34] Luo Y, Yan L S, Shao L Y et al. Golay-differential pulse hybrid coding technology based on Brillouin optical time domain analysis sensors[J]. Acta Optica Sinica, 36, 0806002(2016).

    [35] Horiguchi T. A dual Golay complementary pair of sequences for improving the performance of phase-shift pulse BOTDA fiber sensor[J]. Journal of Lightwave Technology, 30, 3338-3356(2012). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-30-21-3338

    [36] Tsumuraya T, Horiguchi T. The use of Walsh code in modulating the pump light of high spatial resolution phase-shift-pulse Brillouin optical time domain analysis with non-return-to-zero pulses[J]. Measurement Science and Technology, 24, 094025(2013). http://adsabs.harvard.edu/abs/2013MeScT..24i4025Z

    [37] Yokoyama K, Horiguchi T. Combination of Walsh and Golay codes in modulating the pump light of phase-shift pulse BOTDA sensor. [C]//2013 IEEE 4th International Conference on Photonics, October 28-30, 2013, Melaka, Malaysia. New York: IEEE, 160-162(2013).

    [38] Bakar A A A, Horiguchi T. Improvement of signal-to-noise-ratio by combining Walsh and Golay codes in modulating the pump light of phase-shift pulse BOTDA fiber sensor. [C]//2015 9th International Conference on Sensing Technology, December 8-10, 2015, Auckland, New Zealand. New York: IEEE, 269-273(2016).

    [39] Bakar A A A, Horiguchi T. Analysis on the employment of dual Walsh codes in the phase-shift pulse BOTDA (PSP-BOTDA) fiber sensing technique. [C]∥2016 IEEE 6th International Conference on Photonics, March 14-16, 2016, Kuching, Malaysia. New York: IEEE, 16143010(2016).

    [40] Sun Q, Tu X B, Sun S L et al. Long-range BOTDA sensor over 50 km distance employing pre-pumped Simplex coding[J]. Journal of Optics, 18, 055501(2016). http://adsabs.harvard.edu/abs/2016JOpt...18e5501S

    [41] Minardo A, Bernini R, Zeni L. A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors[J]. IEEE Sensors Journal, 9, 633-634(2009). http://ieeexplore.ieee.org/document/4897230/

    [42] Zornoza A, Sagues M, Loayssa A. Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA[J]. Journal of Lightwave Technology, 30, 1066-1072(2012). http://www.opticsinfobase.org/abstract.cfm?URI=jlt-30-8-1066

    [43] Thévenaz L, Mafang S F, Lin J. Effect of pulse depletion in a Brillouin optical time-domain analysis system[J]. Optics Express, 21, 14017-14035(2013). http://europepmc.org/abstract/med/23787592

    [44] Dominguez-Lopez A, Angulo-Vinuesa X, Lopez-Gil A et al. Non-local effects in dual-probe-sideband Brillouin optical time domain analysis[J]. Optics Express, 23, 10341-10352(2015). http://www.ncbi.nlm.nih.gov/pubmed/25969075

    [45] Ruiz-Lombera R, Urricelqui J, Sagues M et al. Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors[J]. IEEE Photonics Journal, 7, 6803609(2015). http://ieeexplore.ieee.org/document/7320952/

    [46] Iribas H, Loayssa A, Sauser F et al. Enhancement of signal-to-noise ratio in Brillouin optical time domain analyzers by dual-probe detection[J]. Proceeding of SPIE, 10323, 103237D(2017). http://ieeexplore.ieee.org/document/7960931/

    [47] Iribas H, Loayssa A, Sauser F et al. Cyclic coding for Brillouin optical time-domain analyzers using probe dithering[J]. Optics Express, 25, 8787-8800(2017). http://europepmc.org/abstract/MED/28437955

    [48] Hu J H, Zhang X P, Yao Y G et al. A BOTDA with break interrogation function over 72 km sensing length[J]. Optics Express, 21, 145-153(2013). http://europepmc.org/abstract/MED/23388905

    [49] Dominguez-Lopez A, Lopez-Gil A, Martin-Lopez S et al. Signal-to-noise ratio improvement in BOTDA using balanced detection[J]. IEEE Photonics Technology Letters, 26, 338-341(2014). http://ieeexplore.ieee.org/document/6678572/

    [50] Zhang L, Wang Z N, Li J et al. Ultra-long dual-sideband BOTDA with balanced detection[J]. Optics & Laser Technology, 68, 206-210(2015). http://www.sciencedirect.com/science/article/pii/S0030399214003090

    [51] Soto M A, Ricchiuti A L, Zhang L et al. Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers[J]. Optics Express, 22, 28584-28595(2014). http://europepmc.org/abstract/med/25402100

    [52] Lalam N, Ng W P, Dai X W. Employing wavelength diversity technique to enhance the Brillouin gain response in BOTDA system. [C]∥Optical Fiber Communication Conference, March 20-22, 2016, Anaheim, California. Washington DC: Optical Society of America, M2D, 4(2016).

    [53] Li Y Q, Zhang L X, Li X J et al. Performance improvement method of Rayleigh Brillouin optical time domain analysis system[J]. Acta Optica Sinica, 37, 0106001(2017).

    [54] Zhang L X, Li Y Q, An Q et al. Temperature sensing technology based on Rayleigh Brillouin optical time domain analysis with pulse coding[J]. Acta Optica Sinica, 37, 1106004(2017).

    [55] Li Y Q, Li T, An Q et al. Analytical model and simulation of pulsed pre-pump Rayleigh BOTDA system[J]. Infrared and Laser Engineering, 45, 86-93(2016).

    Jianjian Wang, Yongqian Li. Review of Methods for Improving Performance of Brillouin Optical Time-Domain Analysis System[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110003
    Download Citation