• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 4, 477 (2014)
Xue-zhe XU*, Wei-xiong ZHAO, Mei-li DONG, Xue-jun GU, Chang-jin HU, Yan-bo GAI, Xiao-ming GAO, Wei HUANG, and Wei-jun ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2014.04.013 Cite this Article
    XU Xue-zhe, ZHAO Wei-xiong, DONG Mei-li, GU Xue-jun, HU Chang-jin, GAI Yan-bo, GAO Xiao-ming, HUANG Wei, ZHANG Wei-jun. Monitoring aerosol extinction with cavity enhanced/ring-down spectroscopy: A brief review[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 477 Copy Citation Text show less
    References

    [4] Schnaiter M, Schmid O, Petzold A, et al. Measurement of wavelength-resolved light absorption by aerosols utilizing a UV-VIS extinction cell [J]. Aerosol. Sci. Tech., 2005, 39(3): 249-260.

    [5] Smith J D, Atkinson D B. A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol [J]. Analyst, 2001, 12(8): 1216-1220.

    [6] Thompson J E, Smith B W, Winefordner J D. Monitoring atmospheric particulate matter through cavity ring-down spectroscopy [J]. Anal. Chem., 2002, 74(9): 1962-1967.

    [7] Thompson J E, Nasajpour H D, Smith B W, et al. Atmospheric aerosol measurements by cavity ringdown turbidimetry [J]. Aerosol. Sci. Tech., 2003, 37(3): 221-230.

    [8] Bulatov V, Fisher M, Schechter I. Aerosol analysis by cavity-ring-down laser spectroscopy [J]. Anal. Chim. Acta, 2002, 46(1): 1-9.

    [9] Strawa A W, Castaneda R, Owano T, et al. The measurement of aerosol optical properties using continuous wave cavity ring-down techniques [J]. J. Atmos. Ocean. Tech., 2003, 20(4): 454-465.

    [10] Pettersson A, Lovejoy E R, Brock C A, et al. Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy [J]. J. Aerosol. Sci., 2004, 35(8): 995-1011.

    [11] Moosmuller H, Varma R, Arnott W P. Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction [J]. Aerosol. Sci. Tech., 2005, 39(1): 30-39.

    [12] Massoli P, Murphy D M, Lack D A, et al. Uncertainty in light scattering measurements by TSI nephelometer: Results from laboratory studies and implications for ambient measurements [J]. Aerosol. Sci. Tech., 2009, 43(11): 1064-1074.

    [15] Scherer J J, Paul J B, O’Keefe A, et al. Cavity ring down laser absorption spectroscopy: History, development, and application to pulsed molecular beams [J]. Chem. Rev., 1997, 97(1): 25-51.

    [16] Berden G, Peeters R, Meijer G. Cavity ring-down spectroscopy: Experimental schemes and applications [J]. Int. Rev. Phys. Chem., 2000, 19(4): 565-607.

    [17] Brown S S. Absorption spectroscopy in high-finesse cavities for atmospheric studies [J]. Chem. Rev., 2003, 103(12): 5219-5238.

    [18] Atkinson D B. Solving chemical problems of environmental importance using cavity ring-down spectroscopy [J]. Analyst, 2003, 128(2): 117-125.

    [19] Mazurenka M, Orr-Ewing A J, Peverall R, et al. Cavity ring-down and cavity enhanced spectroscopy using diode lasers [J]. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2005, 101(1): 100-142.

    [20] Paldus B A, Kachanov A A. An historical overview of cavity-enhanced methods [J]. Can. J. Phys., 2005, 83(10): 975-999.

    [21] Vallance C. Innovations in cavity ring down spectroscopy [J]. New J. Chem., 2005, 29(7): 867-874.

    [22] Ball S M, Jones R L. Broad-band cavity ring-down spectroscopy [J]. Chem. Rev., 2003, 103(12): 5239-5262.

    [23] O’Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources [J]. Rev. Sci. Instrum., 1988, 59(12): 2544.

    [24] Engeln R, Meijer G. A Fourier transform cavity ring down spectrometer [J]. Rev. Sci. Instrum., 1996, 67(8): 2708.

    [25] Engeln R, Bierden G, Van den Berg E, et al. Polarization dependent cavity ring down spectroscopy [J]. J. Chem. Phys., 1997, 107(12): 4458.

    [26] Crosson E R, Haar P, Marcus G A, et al. Pulse-stacked cavity ring-down spectroscopy [J]. Rev. Sci. Instrum., 1999, 70(1): 4.

    [27] Meijer G, Boogaarts M G H, Jongma R T, et al. Coherent cavity ring down spectroscopy [J]. Chem. Phys. Lett., 1994, 217(1-2): 112-116.

    [28] Engeln R, Van den Berg E, Meijer G, et al. Cavity ring down spectrocopy with a free-electron laser [J]. Chem. Phys. Lett., 1997, 269(3): 293-297.

    [29] Xie J, Paldus B A, Wahl E H, et al. Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame [J]. Chem. Phys. Lett., 284(5-6): 387-395.

    [30] Sneep M, Hannemann S, van Duijn E J, et al. Deep-ultraviolet cavity ringdown spectroscopy [J]. Opt. Lett., 29(12): 1378-1380.

    [31] Kulp T J, Bisson S E, Bambha R P, et al. The application of quasi-phase-matched parametric light sources to practical infrared chemical sensing systems [J]. Appl. Phys. B, 2002, 75(2-3): 317-327.

    [32] Brown S S, Stark H, Ravishankara A R. Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3) [J]. Appl. Phys. B, 2002, 75(2-3): 173-182.

    [33] Wheeler M D, Orr-Ewing A J, Ashfold M N R, et al. Predissociation lifetimes of the [EQUATION] state of the SH radical determined by cavity ring-down spectroscopy [J]. Chem. Phys. Lett., 1997, 268(5-6): 421-428.

    [34] Ito F, Nakanaga T. Photodissociation of methyl iodide clusters in the A-band excitation: Photofragmentation excitation spectra of (CH3 I)n by ultraviolet pump-CRD probe measurement [J]. J. Chem. Phys., 2003, 119(11): 5527-5533.

    [35] Zhu L, Ding C F. Temperature dependence of the near UV absorption spectra and photolysis products of ethyl nitrate [J]. Chem. Phys. Lett., 1997, 265(1-2): 177-184.

    [36] Kotterer M, et al. Electronic spectrum of C6 H: 2∏-X2∏ in the gas-phase detected by cavity ringdown [J]. Chem. Phys. Lett., 1997, 26(3): 342-346.

    [37] Lehr L, Hering P. Quantitative nonlinear spectroscopy: A direct comparison of degenerate four-wave mixing with cavity ring-down spectroscopy applied to NaH [J]. IEEE J. Quantum. Elect., 1997, 33(9): 1465-1473.

    [38] Schoemaecker Moreau C, Therssen E, Mercier X, et al. Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames [J]. Appl. Phys. B, 2004, 78(3-4): 485-492.

    [39] Shaw A M, Zare R N, Bennett C V, et al. Bounce by bounce cavity ring-down spectroscopy: Femtosecond temporal imaging [J]. Chemphyschem., 2001, 2(2): 118-121.

    [40] Alexander A J. Reaction kinetics of nitrate radicals with terpenes in solution studied by cavity ring-down spectroscopy [J]. Chem. Phys. Lett., 2004, 393(1-3): 138-142.

    [41] Wang C, Mazzotti F J, Miller G P, et al. Isotopic measurements of uranium using inductively coupled plasma cavity ringdown spectroscopy [J]. Appl. Spectrosc., 2003, 57(9): 1167-1172.

    [42] Romanini D, Gambogi J, Lehmann K K. International symposium on molecular spectroscopy [C]. Ohio State University, RH06. 1995.

    [43] Romanini D, Kachanov A A, Sadeghi N, et al. CW cavity ring down spectroscopy [J]. Chem. Phys. Lett., 1997, 264(3-2): 316-322.

    [44] Romanini D, Kachanov A A, Stoeckel F. Diode laser cavity ring down spectroscopy [J]. Chem. Phys. Lett., 1997, 270(5-6): 538-545.

    [45] Paldus B A, Harris J S, Martin J, et al. Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization [J]. J. Appl. Phys., 1997, 82(7): 3199.

    [46] Ramponi A J, Milanovich F P, Kan T, et al. High sensitivity atmospheric transmission measurements using a cavity ringdown technique [J]. Appl. Opt., 1988, 27(22): 4606-4608.

    [47] Sappey A D, Hill E S, Settersten T, et al. Fixed-frequency cavity ringdown diagnostic for atmospheric particulate matter [J]. Opt. Lett., 1988, 23(12): 954-956.

    [48] Vander Wal R L, Ticich T M. Cavity ringdown and laser-induced incandescence measurements of soot [J]. Appl. Opt., 1999, 38(9): 1444-1451.

    [49] Moosmüller H, Varma R, Arnott W P. Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction [J]. Aerosol Sci. Technol., 2005, 39(1): 30-39.

    [50] Mellon D, King S J, Kim J, et al. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy [J]. J. Phys. Chem. A, 2011, 115(5): 774-783.

    [51] Kebabian P L, Robinson W A, Freedman A. Optical extinction monitor using cw cavity enhanced detection [J]. Rev. Sci. Instrum., 2007, 78(6): 063102.

    [52] Massoli P, Kebabian P L, Onasch T B, et al. Aerosol light extinction measurements by cavity attenuated phase shift (CAPS) spectroscopy: Laboratory validation and field deployment of a compact aerosol particle extinction monitor [J]. Aerosol Sci. Technol., 2010, 44(6): 428-435.

    [53] Abo Riziq A, Erlick C, Dinar E, et al. Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy [J]. Atmos. Chem. Phys., 2007, 7(6): 1523-1536.

    [54] Lang-Yona N, Rudich Y, Segre E, et al. Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer [J]. Anal. Chem., 2009, 81(5): 1762-1769.

    [55] Michel Flores J, Bar-Or R Z, Bluvshtein N, et al. Absorbing aerosols at high relative humidity: Linking hygroscopic growth to optical properties [J]. Atmos. Chem. Phys., 2012, 12(12): 5511-5521.

    [56] Bluvshtein N, Flores J M, Abo Riziq A, et al. An approach for faster retrieval of aerosols’ complex refractive index using cavity ring-down spectroscopy [J]. Aerosol Sci. Technol., 2012, 4(10): 1140-1150.

    [57] Zhang R, Khalizov A F, Pagels J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing [J]. Proc. Natl. Acad. Sci., 2008, 105(30): 10291-10296.

    [58] Li L, Chen J M, Chen H, et al. Monitoring optical properties of aerosols with cavity ring-down spectroscopy [J]. J. Aerosol Sci., 2011, 42(4): 277-284.

    [59] Wang L, Wang W, Ge M. Extinction efficiencies of mixed aerosols measured by aerosol cavity ring down spectrometry [J]. Chinese Sci. Bulletin, 2012, 57(20): 2567-2573.

    [60] Engeln R, Berden G, Peeters R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy [J]. Rev. Sci. Instrum., 1998, 69(11): 3763-3769.

    [61] Hamers E, Schram D, Engeln R. Fourier transform phase shift cavity ring down spectroscopy [J]. Chem. Phys. Lett., 2002, 365(3-4): 237-243.

    [62] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorption spectroscopy [J]. Chem. Phys. Lett., 2003, 371(1-3): 284-294.

    [63] Ball S M, Langridge J M, Jones R L. Broadband cavity enhanced absorption spectroscopy using light emitting diodes [J]. Chem. Phys. Lett., 2004, 398(1-3): 68-74.

    [64] Langridge J M, Ball S M, Jones R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes [J]. Analyst, 2006, 131(8): 916-922.

    [65] Langridge J M, Ball S M, Shillings A J L, et al. A broadband absorption spectrometer using light emitting diode for ultrasensitive, in situ trace gas detection [J]. Rev. Sci. Instrum., 2008, 79(12): 123110.

    [66] Gherman T, Venables D S, Vaughan S, et al. Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: Application to HONO and NO2 [J]. Environ. Sci. Technol., 2008, 42(3): 890-895.

    [67] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids [J]. Rev. Sci. Instrum., 2005, 7(2): 023107.

    [68] Chen J, Venables D S. A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases [J]. Atmos. Meas. Tech., 2011, 4(3): 425-436.

    [69] Ruth A A, Orphal J, Fiedler S E. Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source [J]. Appl. Opt., 2007, 4(17): 3611-3616.

    [70] Thompson E J, Spangler D H. Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient [J]. Appl. Opt., 2006, 45(11): 2465-2473.

    [71] Triki M, Cermak P, Mejean G, et al. Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis [J]. Appl. Phys. B, 2008, 91(1): 195-201.

    [72] Varma R M, Venables D S, Ruth A A, et al. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction [J]. Appl. Opt., 2009, 48(4): B159-B171.

    [73] Venables D S, Gherman T, Orphal J, et al. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy [J]. Environ. Sci. Technol., 2006, 40(21): 6758-6763.

    [74] Vaughan S, Gherman T, Ruth A A, et al. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I-2, IO and OIO [J]. Phys. Chem. Chem. Phys., 2008, 10(30): 4471-4477.

    [75] Meinen J, Thieser J, Platt U, et al. Technical note: Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS [J]. Atmos. Chem. Phys., 2010, 10(8): 3901-3914.

    [77] Wu T, Zhao W, Chen W, et al. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode [J]. Appl. Phy. B, 2009, 94: 85-94.

    [79] Zhao Weixiong, Dong Meili, Chen Weidong, et al. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445~480 nm [J]. Analytical Chemistry, 2013, 85(4): 2260-2268.

    [80] Dong Meili, Zhao Weixiong, Huang Mingqiang, et al. Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2 O in Cl-initiated photooxidation experiment [J]. Chinese Journal of Chemical Physics, 2013, 2(2): 133-139.

    [81] Dong Meili, Zhao Weixiong, Gu Xuejun, et al. Incoherent broadband cavity enhanced absorption spectroscopy for NO2 detection and aerosol extinction measurement [C]. The Twenty-ninth Annual Meeting of the China Meteorological Society, 2012 (in Chinese).

    [86] Thalman R, Volkamer R. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode [J]. Atmos. Meas. Tech., 2010, 3(6): 1797-1814.

    [87] Varma R M, Ball S M, Brauers T, et al. Light extinction by secondary organic aerosol: An intercomparison of three broadband cavity spectrometers [J]. Atmos. Meas. Tech., 2013, (11): 3115-3130.

    [88] Washenfelder R A, Flores J M, Brock C A, et al. Broadband measurements of aerosol extinction in the ultraviolet spectral region [J]. Atmos. Meas. Tech., 2013, (4): 861-877.

    CLP Journals

    [1] YANG Qingying, CHENG Cunfeng, SUN Yu, LIU Anwen, HU Shuiming. Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 669

    [2] Pan Sunqiang, Chen Zhemin, Zhang Jianfeng, Hu Pengbing, Li Guoshui. Cavity Ring Down Detection and Calibration Techniques for the Measurement of Aerosol Extinction[J]. Laser & Optoelectronics Progress, 2016, 53(2): 20102

    [3] MA Weiguang, ZHOU Xiaobin, CAO Zhensong, XU Fei, TIAN Jianfei, ZHOU Yueting, LIU Jianxin, ZHAO Gang. Development of CO2 gas analyzer based on continuous wave cavity ring-down spectroscopy[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 633

    [4] CHEN Yang, ZHAO Weixiong, XU Xuezhe, YANG Chengqiang, LIN Xiaoxiao, GAI Yanbo, ZHANG Weijun. Advances in Chemical Amplification Measurement of Peroxy Radicals[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(4): 241

    XU Xue-zhe, ZHAO Wei-xiong, DONG Mei-li, GU Xue-jun, HU Chang-jin, GAI Yan-bo, GAO Xiao-ming, HUANG Wei, ZHANG Wei-jun. Monitoring aerosol extinction with cavity enhanced/ring-down spectroscopy: A brief review[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 477
    Download Citation