• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 121405 (2017)
Du Quanli1、2, Zhang Peng1、2、*, Wu Di2, and Jia Qingsong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.121405 Cite this Article Set citation alerts
    Du Quanli, Zhang Peng, Wu Di, Jia Qingsong. Raman Gain Spectrum in 1.70 μm Band Pumped by Multimode Laser[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121405 Copy Citation Text show less
    References

    [1] Obi H, Murashima K, Tanaka M, et al. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655.

    [2] Horton N G, Wang K, Demirhan K, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.

    [3] Nguyen T N, Kieu K, Churin D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896.

    [4] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

    [5] Workman J, Weyer L. Practical guide to interpretive near-infrared spectroscopy[M]. Florida: CRC Press, Inc., 2007.

    [6] Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]. 19th Optoelectronics and Communication Conference (OECC) and 39th Australian Conference on Optical Fibre Technology (ACOFT), 2014: 410-411.

    [7] Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dy∶chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.

    [8] Quimby R S, Saad M. Dy∶fluoroindate fiber laser at 4.5 μm with cascade lasing[C]. Advanced Solid State Lasers Congress, 2013: AM2A.7

    [9] Yamada M, Ono H, Ohta K, et al. 1.7 μm band optical fiber amplifier[C]. Optical Fiber Communications Conference and Exhibition, 2014: 1-3.

    [10] Li Z, Alam S U, Daniel J M O, et al. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]. European Conference on Optical Communication, 2014: 1-3.

    [11] Zhang Yan, Zhang Peng, Liu Peng, et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002.

    [12] Quan Z, Gao C, Guo H, et al. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750 nm with volume Bragg grating[J]. Scientific Reports, 2015, 5: 12034.

    [13] Daniel J M, Tokurakawa M, Ibsen M, et al. Ultra-short wavelength operation of a two-micron thulium fiber laser[C]. CLEO: Science and Innovations, 2014: SW1N.2.

    [14] Li Z, Jung Y, Daniel J M O, et al. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]. Optical Fiber Communications Conference and Exhibition, 2015: 1-3.

    [15] Abeeluck A K, Headley C, Jrgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser[J]. Optics Letters, 2004, 29(18): 2163-2165.

    [16] Kawagoe H, Ishida S, Aramaki M, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932.

    [17] Dong P, Gui L, Xiao X, et al. Experimental investigation of supercontinuum generation in highly nonlinear dispersion-shifted fiber pumped by spectrum-sliced amplified spontaneous emission[J]. Optics Communications, 2009, 282(14): 3007-3011.

    [18] Xue G, Zhang B, Yin K, et al. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[C]. SPIE, 2015, 9255: 92550U.

    [19] Dianov E M, Firstov S V, Alyshev S V, et al. A new bismuth-doped fibre laser, emitting in the range 1625-1775 nm[J]. Quantum Electronics, 2014, 44(6): 503-504.

    [20] Agrawal G P. Nonlinear fiber optics[M]. California: Academic Press, 2007.

    [21] Long Q, Wu T, Hu S, et al. Threshold characteristics of forward-pumped fiber Raman amplifier[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030603.

    [22] Wang G, Zhan L, Liu J, et al. Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser[J]. Optics Letters, 2013, 38(1): 19-21.

    [23] Hua X, Leng J, Yang H, et al. Highly efficient Raman conversion in O2, pumped by a seeded narrow band second-harmonic Nd∶YAG laser[J]. Applied Physics B, 2005, 81(4): 525-530.

    [24] Shi J, Ouyang M, Chen X, et al. Stimulated Raman scattering enhanced by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(7): 977-979.

    [25] Zhan L, Kuang Q, Gu Z, et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser[J]. Journal of Lightwave Technology, 2015, 33(2): 391-395.

    [26] Kuang Q, Zhan L, Wang Z, et al. Up to the 1552nd order passively harmonic mode-locked Raman fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2205-2208.

    [27] Wang Zhenbao, Shao Bibo, Zhang Lei, et al. Analysis and measurement of stimulated Brillouin scattering threshold in fiber[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090603.

    [28] Zhang Lei, Wang Zhaoying, Jia Dongfang. Studies on supercontinuum generation in different fiber compositions by using self-made sub-picosecond pulse[J]. Optical Communication Technology, 2009, 33(8): 39-41.

    [29] Zhu Junmei, Zhang Weili, Rao Yunjiang, et al. Output characteristics of low-threshold random distributed feedback fiber laser[J]. Chinese J Lasers, 2013, 40(3): 0302007.

    Du Quanli, Zhang Peng, Wu Di, Jia Qingsong. Raman Gain Spectrum in 1.70 μm Band Pumped by Multimode Laser[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121405
    Download Citation