• Journal of Inorganic Materials
  • Vol. 35, Issue 5, 525 (2020)
Pengren WANG, Yanzi GOU*, and Hao WANG
Author Affiliations
  • Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.15541/jim20190300 Cite this Article
    Pengren WANG, Yanzi GOU, Hao WANG. Third Generation SiC Fibers for Nuclear Applications[J]. Journal of Inorganic Materials, 2020, 35(5): 525 Copy Citation Text show less
    TEM images of three generation SiC fibers[1]
    1. TEM images of three generation SiC fibers[1]
    High-temperature creep-resistance of three generation SiC fibers[21,26-27]
    2. High-temperature creep-resistance of three generation SiC fibers[21,26-27]
    Heat-resistance of the three generations SiC fibers[25]
    3. Heat-resistance of the three generations SiC fibers[25]
    Mechanism of electron beam radiation curing of PCS fiber[28]
    4. Mechanism of electron beam radiation curing of PCS fiber[28]
    Surface (a, b) and cross section (c, d) SEM images of KD-SA fibers after exposure under argon at 1900 ℃ for 1 h[14]
    5. Surface (a, b) and cross section (c, d) SEM images of KD-SA fibers after exposure under argon at 1900 ℃ for 1 h[14]
    Relative density change of SiC fibers and CVD-SiC by neutron irradiation[47]
    6. Relative density change of SiC fibers and CVD-SiC by neutron irradiation[47]
    Swelling of Hi-Nicalon S, CVI SiC-matrix composites plotted against irradiation temperature[54]
    7. Swelling of Hi-Nicalon S, CVI SiC-matrix composites plotted against irradiation temperature[54]
    Process of hybrid NITE-SiC insulator[67]
    8. Process of hybrid NITE-SiC insulator[67]
    (a) Sectional view of SiCf/SiC heater with tungsten terminal, (b) SiCf/SiC heater for BR2 with IR image[68]
    9. (a) Sectional view of SiCf/SiC heater with tungsten terminal, (b) SiCf/SiC heater for BR2 with IR image[68]
    Trade markTensile strength/GPaYoung’s modulus/GPaDiameter/μmC/Si
    First generationNicalon 2003.0200141.33
    Tyranno Lox-M3.3185111.38
    KD-I>2.5>17011.51.29
    Second generationHi-Nicalon2.8270121.39
    Tyranno ZE3.5233111.34
    KD-II>2.7>25011.51.35-1.40
    Third generationHi-Nicalon S2.634012.01.05
    KD-S2.731011.01.08
    Tyranno SA2.83758.0&10.01.08
    KD-SA2.535010.51.05
    Sylramic3.240010.01.01
    Table 1. Compositions and mechanical properties of three generations SiC fibers[5,13-18]
    Brand nameFiber typePreparation technologyTensile strength at room temperature / MPaFailure duration
    Hypercomp PP-HNHi-NicalonMI321>1000 h/1200 ℃
    Hypercomp SC-HNHi-NicalonMI358>1000 h/1200 ℃
    N22SylramicCVI+MI400~500 h/1204 ℃
    N24-ASylramic-iBNCVI+MI450~500 h/1315 ℃
    N24-BSylramic-iBNCVI+MI450~500 h/1315 ℃
    N24-CSylramic-iBNCVI+MI310>1000 h/1315 ℃
    N26Sylramic-iBNCVI+PIP330~300 h/1450 ℃
    A410Hi-NicalonCVI200-315600 h/1200 ℃
    A416Hi-Nicalon SCVI200-315200 h/1400 ℃
    Table 2. Different SiCf/SiC composites and their properties[46]
    Pengren WANG, Yanzi GOU, Hao WANG. Third Generation SiC Fibers for Nuclear Applications[J]. Journal of Inorganic Materials, 2020, 35(5): 525
    Download Citation