• Chinese Optics Letters
  • Vol. 22, Issue 10, 101201 (2024)
Yeguang Yan1,2, Jixi Lu1,2,3,*, Kun Wang1,2, Fei Lu1,2..., Shaowen Zhang1,2, Ziao Liu1,2,3, Xiaoyu Li1,2,3 and Binquan Zhou1,2,3|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • 2Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
  • 3Hefei National Laboratory, Hefei 230088, China
  • show less
    DOI: 10.3788/COL202422.101201 Cite this Article Set citation alerts
    Yeguang Yan, Jixi Lu, Kun Wang, Fei Lu, Shaowen Zhang, Ziao Liu, Xiaoyu Li, Binquan Zhou, "High-sensitivity closed-loop three-axis atomic magnetometer using two elliptically polarized laser beams," Chin. Opt. Lett. 22, 101201 (2024) Copy Citation Text show less
    References

    [1] A.-C. Ji, W. M. Liu, J. L. Song et al. Dynamical creation of fractionalized vortices and vortex lattices. Phys. Rev. Lett., 101, 010402(2008).

    [2] A.-C. Ji, X. C. Xie, W. M. Liu. Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett., 99, 183602(2007).

    [3] R. Qi, X.-L. Yu, Z. B. Li et al. Non-Abelian Josephson effect between two F = 2 spinor Bose-Einstein condensates in double optical traps. Phys. Rev. Lett., 102, 185301(2009).

    [4] R. Li, F. N. Baynes, A. N. Luiten et al. Continuous high-sensitivity and high-bandwidth atomic magnetometer. Phys. Rev. Appl., 14, 064067(2020).

    [5] I. Savukov, Y. J. Kim, V. Shah et al. High-sensitivity operation of single-beam optically pumped magnetometer in a kHz frequency range. Meas. Sci. Technol., 28, 035104(2017).

    [6] A. Soheilian, M. M. Tehranchi, M. Ranjbaran. Detection of magnetic tracers with Mx atomic magnetometer for application to blood velocimetry. Sci. Rep., 11, 7156(2021).

    [7] R. C. Burgess. MEG for greater sensitivity and more precise localization in epilepsy. Neuroimaging Clin., 30, 145(2020).

    [8] S. Xu, M. H. Donaldson, A. Pines et al. Application of atomic magnetometry in magnetic particle detection. Appl. Phys. Lett., 89, 224105(2006).

    [9] J. S. Bennett, B. E. Vyhnalek, H. Greenall et al. Precision magnetometers for aerospace applications: a review. Sensors, 21, 5568(2021).

    [10] M. Pospelov, S. Pustelny, M. P. Ledbetter et al. Detecting domain walls of axionlike models using terrestrial experiments. Phys. Rev. Lett., 110, 021803(2013).

    [11] M. Padniuk, M. Kopciuch, R. Cipolletti et al. Response of atomic spin-based sensors to magnetic and nonmagnetic perturbations. Sci. Rep., 12, 324(2022).

    [12] M. Smiciklas, J. M. Brown, L. W. Cheuk et al. New test of local Lorentz invariance using a 21Ne-Rb-K comagnetometer. Phys. Rev. Lett., 107, 171604(2011).

    [13] Y. Yang, M. Xu, A. Liang et al. A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array. Sci. Rep., 11, 5564(2021).

    [14] Y. J. Kim, I. Savukov, S. Newman. Magnetocardiography with a 16-channel fiber-coupled single-cell Rb optically pumped magnetometer. Appl. Phys. Lett., 114, 143702(2019).

    [15] S. Knappe, T. Sander, L. Trahms. Optically-pumped magnetometers for MEG. Magnetoencephalography, 993(2014).

    [16] A. Borna, T. R. Carter, A. P. Colombo et al. Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system. PLoS ONE, 15, e0227684(2020).

    [17] V. Vivaldi, S. Sommariva, A. Sorrentino. A simplex method for the calibration of a MEG device. Commun. Appl. Ind. Math., 10, 35(2019).

    [18] V. L. Gros, D. Lemaigre, C. Suon et al. Magnetopneumography: a general review. Eur. Respir. J., 2, 149(1989).

    [19] M. J. Brookes, E. Boto, M. Rea et al. Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage, 236, 118025(2021).

    [20] E. Boto, V. Shah, R. M. Hill et al. Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children. NeuroImage, 252, 119027(2022).

    [21] S. J. Seltzer, M. V. Romalis. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Appl. Phys. Lett., 85, 4804(2004).

    [22] H. Huang, H. Dong, L. Chen et al. Single-beam three-axis atomic magnetometer. Appl. Phys. Lett., 109, 062404(2016).

    [23] W. Zheng, S. Su, G. Zhang et al. Vector magnetocardiography measurement with a compact elliptically polarized laser-pumped magnetometer. Biomed. Opt. Express, 11, 649(2020).

    [24] J. Tang, Y. Zhai, Y. Zhai et al. High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field measurement. Opt. Express, 29, 15641(2021).

    [25] F. Lu, J. Lu, B. Li et al. Triaxial vector operation in near-zero field of atomic magnetometer with femtotesla sensitivity. IEEE Trans. Instrum. Meas., 71, 1501210(2022).

    [26] W. Xiao, Y. Wu, X. Zhang et al. Single-beam three-axis optically pumped magnetometers with sub-100 femtotesla sensitivity. Appl. Phys. Express, 14, 066002(2021).

    [27] J. C. Allred, R. N. Lyman, T. W. Kornack et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett., 89, 130801(2002).

    [28] M. P. Ledbetter, I. M. Savukov, V. M. Acosta et al. Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys. Rev. A, 77, 033408(2008).

    [29] V. Shah, M. V. Romalis. Spin-exchange relaxation-free magnetometry using elliptically polarized light. Phys. Rev. A, 80, 013416(2009).

    [30] J. Dupont-Roc. Détermination par des méthodes optiques des trois composantes d’un champ magnétique très faible. Rev. Phys. Appl., 5, 853(1970).

    [31] J. Dupont-Roc. Étude théorique de diverses résonances observables en champ nul sur des atomes «habillés» par des photons de radiofréquence. J. Phys., 32, 135(1971).

    [32] J. Wang, W. Fan, K. Yin et al. Combined effect of pump-light intensity and modulation field on the performance of optically pumped magnetometers under zero-field parametric modulation. Phys. Rev. A, 101, 053427(2020).

    [33] J. Osborne, J. Orton, O. Alem et al. Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism. Proc. SPIE, 10548, 105481G(2018).

    [34] Y. Yan, J. Lu, S. Zhang et al. Three-axis closed-loop optically pumped magnetometer operated in the SERF regime. Opt. Express, 30, 18300(2022).

    [35] Y. Chen, L. Zhao, N. Zhang et al. Single beam Cs-Ne SERF atomic magnetometer with the laser power differential method. Opt. Express, 30, 16541(2022).

    [36] J. Lu, Z. Qian, J. Fang et al. Effects of AC magnetic field on spin-exchange relaxation of atomic magnetometer. Appl. Phys. B, 122, 59(2016).

    [37] S. Appelt, A. Ben-Amar Baranga, A. R. Young et al. Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells. Phys. Rev. A, 59, 2078(1999).

    [38] J. Lu, W. Quan, M. Ding et al. Suppression of light shift for high-density alkali-metal atomic magnetometer. IEEE Sens. J., 19, 492(2019).

    [39] I. Novikova, A. B. Matsko, V. L. Velichansky et al. Compensation of ac Stark shifts in optical magnetometry. Phys. Rev. A, 63, 063802(2001).

    [40] E. Boto, N. Holmes, J. Leggett et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555, 657(2018).

    Yeguang Yan, Jixi Lu, Kun Wang, Fei Lu, Shaowen Zhang, Ziao Liu, Xiaoyu Li, Binquan Zhou, "High-sensitivity closed-loop three-axis atomic magnetometer using two elliptically polarized laser beams," Chin. Opt. Lett. 22, 101201 (2024)
    Download Citation