• NUCLEAR TECHNIQUES
  • Vol. 48, Issue 2, 020001 (2025)
Qingcao WEN1,3, Zijian XU2,3, Aiying CHEN1, and Renzhong TAI2,3,*
Author Affiliations
  • 1University of Shanghai for Science and Technology, Shanghai 200082, China
  • 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.11889/j.0253-3219.2025.hjs.48.230032 Cite this Article
    Qingcao WEN, Zijian XU, Aiying CHEN, Renzhong TAI. Advances in applications of in situ synchrotron-based X-ray techniques in supercapacitor research[J]. NUCLEAR TECHNIQUES, 2025, 48(2): 020001 Copy Citation Text show less
    References

    [1] Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 19, 1151-1163(2020).

    [2] Koohi-Fayegh S, Rosen M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 27, 101047(2020).

    [3] Olabi A G, Onumaegbu C, Wilberforce T et al. Critical review of energy storage systems[J]. Energy, 214, 118987(2021).

    [4] Fleischmann S, Mitchell J B, Wang R C et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chemical Reviews, 120, 6738-6782(2020).

    [5] Shao Y L, El-Kady M F, Sun J Y et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 118, 9233-9280(2018).

    [6] Lin Z, Goikolea E, Balducci A et al. Materials for supercapacitors: when Li-ion battery power is not enough[J]. Materials Today, 21, 419-436(2018).

    [7] Ding J, Hu W B, Paek E et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium[J]. Chemical Reviews, 118, 6457-6498(2018).

    [8] Muzaffar A, Ahamed M B, Deshmukh K et al. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 101, 123-145(2019).

    [9] Kurra N, Jiang Q. Supercapacitors[M]. Storing Energy, 383-417(2022).

    [10] Raza W, Ali F, Raza N et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 52, 441-473(2018).

    [11] Choi C, Ashby D S, Butts D M et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 5, 5-19(2020).

    [12] Tang Y X, Zhang Y Y, Malyi O I et al. Identifying the origin and contribution of surface storage in TiO2(B) nanotube electrode by in situ dynamic valence state monitoring[J]. Advanced Materials, 30, 1802200(2018).

    [13] Zhang L, Hu X S, Wang Z P et al. A review of supercapacitor modeling, estimation, and applications: a control/management perspective[J]. Renewable and Sustainable Energy Reviews, 81, 1868-1878(2018).

    [14] Huang S F, Zhu X L, Sarkar S et al. Challenges and opportunities for supercapacitors[J]. APL Materials, 7, 100901(2019).

    [15] Bak S M, Shadike Z, Lin R Q et al. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research[J]. NPG Asia Materials, 10, 563-580(2018).

    [16] Liu X S, Wang D D, Liu G et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy[J]. Nature Communications, 4, 2568(2013).

    [17] Li W H, Li M S, Hu Y F et al. Synchrotron-based X-ray absorption fine structures, X-ray diffraction, and X-ray microscopy techniques applied in the study of lithium secondary batteries[J]. Small Methods, 2, 1700341(2018).

    [18] Wang L G, Wang J J, Zuo P J. Probing battery electrochemistry with in operando synchrotron X-ray imaging techniques[J]. Small Methods, 2, 1700293(2018).

    [19] Manthiram A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 11, 1550(2020).

    [20] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 343, 1210-1211(2014).

    [21] Ice G E, Budai J D, Pang J W L. The race to X-ray microbeam and nanobeam science[J]. Science, 334, 1234-1239(2011).

    [22] Stumm von Bordwehr R. A History of X-ray absorption fine structure[J]. Annales de Physique, 14, 377-465.

    [23] Wang J J, Chen-Wiegart Y K, Wang J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J]. Nature Communications, 5, 4570(2014).

    [24] Yang F J, Hamilton J H[M]. Modern Atomic and Nuclear Physics(2010).

    [25] Liu D Q, Shadike Z, Lin R Q et al. Review of recent development of in situ/operando characterization techniques for lithium battery research[J]. Advanced Materials, 31, e1806620(2019).

    [26] Deng T, Zhang W, Arcelus O et al. Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors[J]. Nature Communications, 8, 15194(2017).

    [27] Ling T, Da P F, Zheng X L et al. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance[J]. Science Advances, 4, eaau6261(2018).

    [28] Ma N, Kosasang S, Chomkhuntod P et al. Insight into the unusual intercalation/deintercalation phenomena of alkali cations in the layered manganese oxide for electrochemical capacitors[J]. Journal of Power Sources, 455, 227969(2020).

    [29] Sirisinudomkit P, Iamprasertkun P, Krittayavathananon A et al. Hybrid energy storage of Ni(OH)2-coated N-doped graphene aerogel//N-doped graphene aerogel for the replacement of NiCd and NiMH batteries[J]. Scientific Reports, 7, 1124(2017).

    [30] Liang Y R, Zhao C Z, Yuan H et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat, 1, 6-32(2019).

    [31] Zhenhong MAI. Synchrotron radiation and its applications[C](2008).

    [32] TAI Renzhong. X-ray physics[J]. Physics, 50, 501-511(2021).

    [33] YANG Chunming, HONG Chunxia, ZHOU Ping. Synchrotron radiation small angle X-ray scattering in material research[J]. Materials in China, 40, 112-119+1(2021).

    [34] Wang J Y, Zhao X Y, Liu Y P et al. Small-angle X-ray scattering study on the orientation of suspended sodium titanate nanofiber induced by applied electric field[J]. Radiation Detection Technology and Methods, 3, 36(2019).

    [35] Zhao Y X, Peng L, Liu S M et al. Pore structure characterization of shales using synchrotron SAXS and NMR cryoporometry[J]. Marine and Petroleum Geology, 102, 116-125(2019).

    [36] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 7, 1597-1614(2014).

    [37] Fu W B, Wang Y, Kong K L et al. Materials and processing of lithium-ion battery cathodes[J]. Nanoenergy Advances, 3, 138-154(2023).

    [38] Prehal C, Weingarth D, Perre E et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering[J]. Energy & Environmental Science, 8, 1725-1735(2015).

    [39] Ruch P W, Hahn M, Cericola D et al. A dilatometric and small-angle X-ray scattering study of the electrochemical activation of mesophase pitch-derived carbon in non-aqueous electrolyte solution[J]. Carbon, 48, 1880-1888(2010).

    [40] Prehal C, Koczwara C, Jäckel N et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering[J]. Nature Energy, 2, 16215(2017).

    [41] Prehal C, Koczwara C, Amenitsch H et al. Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors[J]. Nature Communications, 9, 4145(2018).

    [42] Alford T L, Feldman L C, Mayer J W[M]. Fundamentals of Nanoscale Film Analysis(2007).

    [43] Meisburger S P, Warkentin M, Chen H M et al. Breaking the radiation damage limit with cryo-SAXS[J]. Biophysical Journal, 104, 227-236(2013).

    [44] Patra A, K N , Jose J R et al. Understanding the charge storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations[J]. Journal of Materials Chemistry A, 9, 25852-25891(2021).

    [45] Tan W L, McNeill C R. X-ray diffraction of photovoltaic perovskites: Principles and applications[J]. Applied Physics Reviews, 9, 021310(2022).

    [46] Abdollahifar M, Huang S S, Lin Y H et al. Tetragonal LiMn2O4 as dual-functional pseudocapacitor-battery electrode in aqueous Li-ion electrolytes[J]. Journal of Power Sources, 412, 545-551(2019).

    [47] Borkiewicz O J, Shyam B, Wiaderek K M et al. The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements[J]. Journal of Applied Crystallography, 45, 1261-1269(2012).

    [48] Sun J H, Iakunkov A, Rebrikova A T et al. Exactly matched pore size for the intercalation of electrolyte ions determined using the tunable swelling of graphite oxide in supercapacitor electrodes[J]. Nanoscale, 10, 21386-21395(2018).

    [49] Shapiro D A, Yu Y S, Tyliszczak T et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy[J]. Nature Photonics, 8, 765-769(2014).

    [50] Pfeiffer F. X-ray ptychography[J]. Nature Photonics, 12, 9-17(2018).

    [51] Sun T X, Sun G, Yu F D et al. Soft X-ray ptychography chemical imaging of degradation in a composite surface-reconstructed Li-rich cathode[J]. ACS Nano, 15, 1475-1485(2021).

    [52] Asakura D, Hosono E, Nanba Y et al. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries[J]. AIP Advances, 6, 035105(2016).

    [53] Xu Y H, Hu E Y, Zhang K et al. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates[J]. ACS Energy Letters, 2, 1240-1245(2017).

    [54] Lim J, Li Y Y, Alsem D H et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles[J]. Science, 353, 566-571(2016).

    [55] Lin F, Nordlund D, Li Y Y et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nature Energy, 1, 15004(2016).

    [56] Cao C T, Toney M F, Sham T K et al. Emerging X-ray imaging technologies for energy materials[J]. Materials Today, 34, 132-147(2020).

    [57] Egami B T, Billinge S J L[M]. Underneath the Bragg peaks: structural analysis of complex materials(2003).

    [58] Simonov A, De Baerdemaeker T, Boström H L B et al. Hidden diversity of vacancy networks in Prussian blue analogues[J]. Nature, 578, 256-260(2020).

    [59] Zhu H, Huang Y L, Ren J C et al. Bridging structural inhomogeneity to functionality: pair distribution function methods for functional materials development[J]. Advanced Science, 8, 2003534(2021).

    [60] Bras W, Myles D A A, Felici R. When X-rays alter the course of your experiments[J]. Journal of Physics: Condensed Matter, 33, 423002(2021).

    Qingcao WEN, Zijian XU, Aiying CHEN, Renzhong TAI. Advances in applications of in situ synchrotron-based X-ray techniques in supercapacitor research[J]. NUCLEAR TECHNIQUES, 2025, 48(2): 020001
    Download Citation