Author Affiliations
1University of Shanghai for Science and Technology, Shanghai 200082, China2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, Chinashow less
Fig. 1. Ragone plot illustrating the performances of specific power
vs. specific energy for different electrical energy storage technologies. Times shown in the plot are the discharge time, obtained by dividing the energy density by the power density
[5] (color online)
Fig. 2. K-edge absorption spectra of Cu
[24] Fig. 3. In situ synchrotron radiation electrochemical XAS equipment
[26] Fig. 4. Comparison of in situ XANES data collected on the electrode with that from the reaction model of Co(OH)
2 and CoOOH transformation (color online) (a) In-situ XANES spectra of the entire charge/discharge cycle, (b) Reaction model of Co(OH)
2 and CoOOH phase transformation, (c) In situ XANES spectra of the charging process, (d) In situ XANES spectra of the discharge process
[26] Fig. 5. Structural changes of the electrode material during phase transition obtained by theoretical computations in comparison with in situ EXAFS fitting results (color online) (a) Phase transformation energy profile from DFT and the corresponding lattice structure changes, (b) In situ EXAFS spectra of an entire charge/discharge cycle in 3D mode, (c~d) In situ EXAFS spectra of the charge and discharge processes, respectively, (e~g) Fitting results of EXAFS spectra A, D and H, respectively
[26] Fig. 6. Analysis of charge storage mechanism in Zn
xCo
1-xO NRs (color online)(a) O-K edge XAS spectra of Zn
0.04Co
0.96O NRs before and after processing at -0.2 V (Ag/AgCl), (b) Co-L
2,3 edge XAS spectra of Zn
xCo
1-xO NRs collected at -1 V and -0.2 V (Ag/AgCl), (c) Average Co-oxidation state change (right) and the corresponding theoretical/experimental capacity (left) of Zn
xCo
1-xO NRs from -1 V to -0.2 V (Ag/AgCl) based on the Co-L
2,3 edge spectra fitting
[27] Fig. 7. Mn K-edge XANES spectra at different working potentials of Li-birnessite with Li
2SO
4 (a), Na
2SO
4 (b), K
2SO
4 (c), Rb
2SO
4 (d), and Cs
2SO
4 (e) electrolytes at 0.5 mol·L
-1 [28] (color online)
Fig. 8. Variation of the Mn oxidation states in Li-MnO
2 nanoplates with respect to the applied potentials. These oxidation states were derived from the XAS measurements of Li-birnessite within Li
2SO
4 (a), Na
2SO
4 (b), K
2SO
4 (c), Rb
2SO
4 (d), and Cs
2SO
4 (e) electrolytes, respectively
[28] (color online)
Fig. 9. (a) In-situ high-resolution Ni K-edge fluorescence XAS spectra of the as-prepared Ni(OH)
2-N-rGO
ae electrode at different charging/discharging potentials and XAS spectra of Ni standard compounds, and (b) Ni oxidation state
vs. Δ
E (eV) of the Ni(OH)
2-N-rGO
ae electrode during charging/discharging by a chronoamperometry method at different applied potentials (Ag/AgCl)
[29] (color online)
Fig. 10. In-situ electrochemistry SAXS experimental device
[38] Fig. 11. Combined X-ray scattering and theoretical modeling for analysis
[40] (color online)
Fig. 12. Quantification of parameters controlling ion charge storage mechanisms
[41] (color online)
Fig. 13. Ion concentration change during potentiostatic charge/discharge
[41] (color online)
Fig. 14. Schematic of AMPIX electrochemical reaction cell
[47] Fig. 15. (a) CV curves of the first 27 cycles of a ZMO electrode cycled in Li
2SiO
4 (aq) and the CV curve of a CLMO electrode (red dashed line) is also shown for comparison; (b) operando synchrotron XRD patterns obtained at the end of each cycle; and (c) XANES spectra of ZMO, ion-exchange derived TLMO, and CLMO
[46] (color online)
Fig. 16. (a) Operando XRD patterns during a CV scan and (b) in situ XANES spectra acquired at the end of cathodic and anodic scans of a CV cycle, respectively
[46] (color online)
Fig. 17. Synchrotron XRD (
λ=0.467 94 Å) patterns and interlayer spacing
vs. temperature curves recorded for BGO in: (a, d) 0.5 mol·L
-1 TEA-BF4 electrolyte, (b, e) 1 mol·L
-1 TEA-BF4 electrolyte, and (c, f) 2 mol·L
-1 TEA-BF4 electrolyte, upon cooling until the freezing of acetonitrile
[48] (color online)
| 表征方式名称 Characterization techniques | 优点Advantages | 缺点Disadvantages |
---|
已有 Current status | X射线 吸收谱(XAS) X-ray Absorption Spectroscopy (XAS) | 硬线 Hard XAS | XANES:价态变化、共价性和元素特有的局部配位环境 EXAFS:键长、配位数、无序度的局部结构变化 XANES: Reveals valence changes, covalency, and element-specific local coordination environmentEXAFS: Provides information about local structural changes including bond lengths, coordination numbers, and disorder | 不能研究低原子序数元素 Cannot study elements with low atomic numbers | 软线 Soft XAS | 1)探测电极材料键长、配位数、无序度的局部结构变化 2)透射深度:俄歇电子产额:~1 nm;总电子产额:~10 nm; 部分电子产额:~5 nm;总荧光产额:~500 nm 1) Detects changes in bond lengths, coordination numbers, and local structural disorder of electrode materials2) Probing depth: Auger electron yield: ~1 nm; Total electron yield: ~10 nm; Partial electron yield: ~5 nm; Total fluorescence yield: ~500 nm | 1)需要超高真空条件进行测量 2)难以使用液体电解质构建原位反应池 1) Requires ultra-high vacuum conditions for measurement2) Difficult to construct in situ reaction cells with liquid electrolytes | 小角散射(SAXS) Small-angle X-ray Scattering (SAXS) | | 1)散射强度的变化预测储能机理 2)得到不同孔道的吸附信息 1) Changes in scattering intensity can predict energy storage mechanisms2) Provides information about adsorption in different pore channels | 不同离子的散射难以定量化 Difficult to quantify scattering from different ions | X射线衍射 (XRD) X-ray Diffraction (XRD) | | 1)获得平均结构信息:结晶度、相纯度、相种类、原子位置、晶格参数 2)比较容易设计实验和原位反应池 1) Provides average structural information: crystallinity, phase purity, phase types, atomic positions, lattice parameters2) Relatively easy to design experiments and in situ reaction cells | 非晶材料的信息难以获取 Difficult to obtain information from amorphous materials | 展望 Future prospects | X射线成像 X-ray imaging | | 1)微观/宏观尺度形貌与结构:微裂纹、颗粒断裂、扭曲 2)可获得化学信息(元素/化学作图) 3)可以做三维断层成像 4)空间分辨率:TXM:20~30 nm;STXM:12~40 nm;XFM:亚微米CDI:几纳米 5)透射深度:TXM:几十微米;STXM:200 nm,XFM:几十微米;CDI:几十纳米 1) Microscopic/macroscopic morphology and structure: microcracks, particle fracture, distortion2) Can obtain chemical information (elemental/chemical mapping)3) Capable of three-dimensional tomography4) Spatial resolution: TXM: 20~30 nm; STXM: 12~40 nm; XFM: submicron; CDI: several nanometers5) Penetration depth: TXM: tens of micrometers; STXM: 200 nm; XFM: tens of micrometers; CDI: tens of nanometers | 原位反应池的设计相对复杂相对 Relatively complex design of in situ reaction cells | 对分布函数(PDF) Pair Distribution Function (PDF) | | 1)短程和长程结构信息:原子对距离,局部有序/无序 2)有助于解决非晶无序材料的结构问题 1) Short-range and long-range structural information: atomic pair distances, local order/disorder2) Helps resolve structural problems of amorphous disordered materials | 1)资源有限(可用的光束线站数量很少) 2)原位反应池设计难度大 1) Limited resources (few available beamlines)2) Challenging design of in situ reaction cells |
|
Table 1. Advantages and disadvantages of different in situ synchrotron radiation characterization techniques