• Journal of Natural Resources
  • Vol. 35, Issue 6, 1484 (2020)
Zheng-chao REN1、2、*, Hua-zhong ZHU3, Hua SHI4, and Xiao-ni LIU5
Author Affiliations
  • 1College of Finance and Economics, Gansu Agricultural University, Lanzhou 730070, China
  • 2Research Center of Ecological Construction and Environmental Conservation in Gansu Province, Lanzhou 730070, China
  • 3Institute of Geographical Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 4Earth Resources Observation and Science (EROS) Center, ASRC Federal InuTeq, Contractor to the U.S. Geological Survey (USGS), Sioux Falls 57198, USA
  • 5College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
  • show less
    DOI: 10.31497/zrzyxb.20200619 Cite this Article
    Zheng-chao REN, Hua-zhong ZHU, Hua SHI, Xiao-ni LIU. Spatio-temporal distribution pattern of potential natural vegetation and its response to climate change from Last Interglacial to future 2070s in China[J]. Journal of Natural Resources, 2020, 35(6): 1484 Copy Citation Text show less
    References

    [1] KELLY A, POWELL D C, RIGGS R A. Predicting potential natural vegetation in an interior northwest landscape using classification tree modeling and a GIS[D]. Western Journal of Applied Forestry, 20, 117-127(2005).

    [2] ROSATI L, BLASI C, MARIGNANI M. A gap analysis comparing natura 2000 vs national protected area network with potential natural vegetation[D]. Community Ecology, 9, 147-154(2008).

    [3] GARZON-MACHADO V, AGUILAR M J A, GONZALEZ-GONZALEZ R et al. Actual and potential natural vegetation on the Canary Islands and its conservation status[D]. Biodiversity and Conservation, 19, 3089-3140(2010).

    [4] CRAMER W, THONICKE K. Long-term trends in vegetation dynamics and forest fires in Brandenburg (Germany) under a changing climate[D]. Natural Hazards, 38, 283-300(2006).

    [5] HICKLER T, FEEHAN J, VOHLAND K et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model[D]. Global Ecology and Biogeography, 21, 50-63(2012).

    [6] NI J, PRENTICE I C, WANG H. Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2[D]. Regional Environmental Change, 11, 715-727(2011).

    [7] TÜXEN R. Die heutige potentielle natürliche vegetation als gegenstand der vegetationskartierung[D]. Angewandte Pflanzensoziologie (Stolzenau), 13, 5-42(1956).

    [8] CARRIÓN J S, FERNANDEZ S. The survival of the 'natural potential vegetation' concept (or the power of tradition)[D]. Journal of Biogeography, 36, 2202-2203(2009).

    [9] FILIBECK G, MARIGNANI M, FARRIS E et al. The power of potential natural vegetation (and of spatial-temporal scale): A response to Carrión & Fernandez (2009)[D]. Journal of Biogeography, 37, 2211-2213(2010).

    [10] LOIDI J, PAZ P L P, ARCO M et al. Understanding properly the 'potential natural vegetation' concept[D]. Journal of Biogeography, 37, 2209-2211(2010).

    [11] DECOCQ G, CHIARUCCI A, JO M B et al. The concept of potential natural vegetation: An epitaph?[D]. Journal of Vegetation Science, 21, 1172-1178(2010).

    [12] SOMODI I, EWALD J, MOLNÁR Z. Towards a more transparent use of the potential natural vegetation concept-an answer to Chiarucci et al[D]. Journal of Vegetation Science, 23, 590-595(2012).

    [13] CARRIÓN J S. The concepts of potential natural vegetation (PNV) and other abstraction (trying to pick up fish with wet hands)[D]. Journal of Biogeography, 37, 2213-2215(2010).

    [14] LIONELLO P, ZAMPIERI M. Simple statistical approach for computing land cover types and potential natural vegetation[D]. Climate Research, 41, 205-220(2010).

    [15] WINTER S, LOHBERGER E, FISCHER H S et al. Improving transboundary maps of potential natural vegetation using statistical modeling based on environmental predictors[D]. Folia Geobotanica, 48, 115-135(2013).

    [16] HÄRING T, REGER B, EWALD J. The TRM model of potential natural vegetation in mountain forests[D]. Folia Geobotanica, 49, 337-359(2014).

    [17] JACKSON S T. Natural, potential and actual vegetation in North America[D]. Journal of Vegetation Science, 24, 772-776(2013).

    [19] WANG L X, YANG J, LIU H M et al. Predictive modeling of the potential natural vegetation pattern in Northeast China[D]. Ecological Research, 24, 1313-1321(2009).

    [20] WU S H, YUAN Q Z, ZHAO D S et al. Validation of the integrated biosphere simulator in simulating the potential natural vegetation map of China[D]. Ecological Research, 26, 917-929(2011).

    [22] LIANG T G, CAO J J, FENG Q S et al. Changes in global potential vegetation distributions from 1911 to 2000 as simulated by the comprehensive sequential classification system approach[D]. Chinese Science Bulletin, 57, 1298-1310(2012).

    [29] LIANG T G, FENG Q S, HUANG X D et al. Characteristics of global potential natural vegetation distribution from 1911 to 2000 based on comprehensive sequential classification system approach[D]. Grassland Science, 59, 87-99(2013).

    [30] YU H, LIANG T G, FENG Q S et al. Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data[D]. Grassland Science, 58, 208-220(2012).

    [32] YUE T X, FAN Z M, CHEN C F et al. Surface modelling of global terrestrial ecosystems under three climate change scenarios[D]. Ecological Modelling, 222, 2342-2361(2011).

    [33] HART J F. Central tendency in areal distributions[D]. Economic Geography, 30, 48-59(1954).

    [34] LEEMANS R, MONSERUD R A. Comparing global vegetation maps with the Kappa statistic[D]. Ecological Modelling, 62, 275-293(1992).

    [35] PRENTICE I C, HARRISON S P, CRAMER W et al. A global biome model based on plant physiology and dominance, soil properties and climate[D]. Journal of Biogeography, 19, 117-134(1992).

    [36] SUN A Z, MA Y Z, FENG Z D. Vegetation and environmental changes in western Chinese Loess Plateau since 13.0 ka BP[D]. Journal of Geographical Sciences, 20, 177-192(2010).

    [38] MARTÍNEZ-TABERNER A, MESTRE I, RUIZ-PEREZ M et al. Prediction of potential submerged vegetation in a silted coastal marsh, Albufera of Majorea, Balearic Islands[D]. Journal of Environmental Management, 35, 1-12(1992).

    [39] PLAMER A R, STADEN J M V. Predicting the distribution of plant communities using annual rainfall and elevation: An example from Southern Africa[D]. Journal of Vegetation Science, 3, 261-266(1992).

    [40] RAMANKUTTY N, FOLEY J A. Estimating historical changes in global land cover: Croplands from 1700 to 1992[D]. Global Biogeochemical Cycles, 13, 997-1027(1999).

    [41] HOLDRIDGE L R. Determination of world plant formations from simple climatic data[D]. Science, 105, 367-368(1947).

    [42] HATHEWAY W H, HOLDRIDGE L R, GRENKE W C et al. Forest Environments in Tropical Life Zones: A Pilot Study, 1-747(1971).

    [43] NEILSON R P. A model for predicting continental-scale vegetation distribution and water balance[D]. Ecological Applications, 5, 362-385(1995).

    [44] NEILSON R P, MARKS D. A global perspective of regional vegetation and hydrological sensitivities from climate change[D]. Journal of Vegetation Science, 5, 715-730(1994).

    [45] KAPLAN J O. Geophysical Application of Vegetation Modeling[D]. Lund: Lund University(2001).

    [46] FOLEY J A, PRENTICE I C, RAMANKUTTY N et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[D]. Global Biogeochemical Cycles, 10, 603-628(1996).

    [47] FOLEY J A, DELIRE C, KUCHARIK C J et al. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure[D]. Global Biogeochemical Cycles, 14, 795-825(2000).

    Zheng-chao REN, Hua-zhong ZHU, Hua SHI, Xiao-ni LIU. Spatio-temporal distribution pattern of potential natural vegetation and its response to climate change from Last Interglacial to future 2070s in China[J]. Journal of Natural Resources, 2020, 35(6): 1484
    Download Citation