[1] W. D. Phillips, H. Metcalf. Laser deceleration of an atomic beam. Phys. Rev. Lett., 48, 596-599(1982).
[2] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55, 48-51(1985).
[3] F. Diedrich, J. C. Bergquist, W. M. Itano, D. J. Wineland. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett., 62, 403-406(1989).
[4] J. I. Cirac, P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74, 4091-4094(1995).
[5] I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P. Sedlack, J. M. Doyle. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett., 118, 173201(2017).
[6] J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, E. A. Hinds. Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett., 120, 123201(2018).
[7] L. Baum, N. B. Vilas, C. Hallas, B. L. Augenbraun, S. Raval, D. Mitra, J. M. Doyle. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett., 124, 133201(2020).
[8] R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan. Observation of laser-induced fluorescent cooling of a solid. Nature, 377, 500-503(1995).
[9] S. D. Melgaard, D. V. Seletskiy, A. D. Lieto, M. Tonelli, M. Sheik-Bahae. Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature. Opt. Lett., 38, 1588-1590(2013).
[10] P. B. Roder, B. E. Smith, X. Zhou, M. J. Crane, P. J. Pauzauskie. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc. Natl. Acad. Sci. USA, 112, 15024-15029(2015).
[11] A. T. M. A. Rahman, P. F. Barker. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals. Nat. Photonics, 11, 634-638(2017).
[12] Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, O. Painter. Mechanical oscillation and cooling actuated by the optical gradient force. Phys. Rev. Lett., 103, 103601(2009).
[13] G. S. Wiederhecker, L. Chen, A. Gondarenko, M. Lipson. Controlling photonic structures using optical forces. Nature, 462, 633-636(2009).
[14] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).
[15] A. Derevianko, H. Katori. Colloquium: physics of optical lattice clocks. Rev. Mod. Phys., 83, 331-347(2011).
[16] W. Ren, T. Li, Q. Qu, B. Wang, L. Li, D. Lü, W. Chen, L. Liu. Development of a space cold atom clock. Natl. Sci. Rev., 7, 1828-1836(2020).
[17] B. Chen, J. Long, H. Xie, C. Li, L. Chen, B. Jiang, S. Chen. Portable atomic gravimeter operating in noisy urban environments. Chin. Opt. Lett., 18, 090201(2020).
[18] C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89, 035002(2017).
[19] J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 83, 1523-1543(2011).
[20] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, R. G. Hulet. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature, 519, 211-214(2015).
[21] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551, 579-584(2017).
[22] K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, 1041-1093(2010).
[23] M. Saffman, T. G. Walker, K. Mølmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82, 2313-2363(2010).
[24] D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, S. Chu. Optical molasses and multilevel atoms: experiment. J. Opt. Soc. Am. B, 6, 2072-2083(1989).
[25] R. Gati, B. Hemmerling, J. Fölling, M. Albiez, M. K. Oberthaler. Noise thermometry with two weakly coupled Bose-Einstein condensates. Phys. Rev. Lett., 96, 130404(2006).
[26] F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Hendl, F. Schreck, R. Grimm. Collisional stability of 40 K immersed in a strongly interacting Fermi gas of 6Li. Phys. Rev. Lett., 103, 223203(2009).
[27] H. Cheng, S. Deng, Z. Zhang, J. Xiang, J. Ji, W. Ren, T. Li, Q. Qu, L. Liu, D. Lü. Uncertainty evaluation of the second-order Zeeman shift of a transportable 87Rb atomic fountain clock. Chin. Opt. Lett., 19, 120201(2021).
[28] X. Wang, Y. Sun, H.-D. Cheng, J.-Y. Wan, Y.-L. Meng, L. Xiao, L. Liu. Nearly nondestructive thermometry of labeled cold atoms and application to isotropic laser cooling. Phys. Rev. Appl., 14, 024030(2020).
[29] X. Wang, Y. Sun, L. Liu. Characterization of isotropic laser cooling for application in quantum sensing. Opt. Express, 29, 43435-43444(2021).
[30] P. G. Petrov, D. Oblak, C. L. G. Alzar, N. Kjærgaard, E. S. Polzik. Nondestructive interferometric characterization of an optical dipole trap. Phys. Rev. A, 75, 033803(2007).
[31] M. Mehboudi, A. Lampo, C. Charalambous, L. A. Correa, M. A. García-March, M. Lewenstein. Using polarons for sub-nK quantum nondemolition thermometry in a Bose-Einstein condensate. Phys. Rev. Lett., 122, 030403(2019).
[32] J. C. Maxwell. Theory of Heat(1871).
[33] V. Serreli, C.-F. Lee, E. R. Kay, D. A. Leigh. A molecular information ratchet. Nature, 445, 523-527(2007).
[34] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys., 6, 988-992(2010).
[35] J. V. Koski, V. F. Maisi, T. Sagawa, J. P. Pekola. Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. Phys. Rev. Lett., 113, 030601(2014).
[36] J. V. Koski, V. F. Maisi, J. P. Pekola, D. V. Averin. Experimental realization of a Szilard engine with a single electron. Proc. Natl. Acad. Sci. USA, 111, 13786-13789(2014).
[37] J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, J. P. Pekola. On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett., 115, 260602(2015).
[38] M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V. Vedral, I. A. Walmsley. Photonic Maxwell’s demon. Phys. Rev. Lett., 116, 050401(2016).
[39] P. A. Camati, J. P. S. Peterson, T. B. Batalhão, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, R. M. Serra. Experimental rectification of entropy production by Maxwell’s demon in a quantum system. Phys. Rev. Lett., 117, 240502(2016).
[40] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, B. Huard. Observing a quantum Maxwell demon at work. Proc. Natl. Acad. Sci. USA, 114, 7561-7564(2017).
[41] R. Sánchez, J. Splettstoesser, R. S. Whitney. Nonequilibrium system as a demon. Phys. Rev. Lett., 123, 216801(2019).
[42] T. Binnewies, U. Sterr, J. Helmcke, F. Riehle. Cooling by Maxwell’s demon: preparation of single-velocity atoms for matter-wave interferometry. Phys. Rev. A, 62, 011601(2000).
[43] J. J. Thorn, E. A. Schoene, T. Li, D. A. Steck. Dynamics of cold atoms crossing a one-way barrier. Phys. Rev. A, 79, 063402(2009).
[44] L. Liu, D.-S. Lü, W.-B. Chen, T. Li, Q.-Z. Qu, B. Wang, L. Li, W. Ren, Z.-R. Dong, J.-B. Zhao, W.-B. Xia, X. Zhao, J. W. Ji, M.-F. Ye, Y.-G. Sun, Y.-Y. Yao, D. Song, Z.-G. Liang, S.-J. Hu, D.-H. Yu, X. Hou, W. Shi, H.-G. Zang, J.-F. Xiang, X.-K. Peng, Y.-Z. Wang. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun., 9, 2760(2018).
[45] G. M. Tino, A. Bassi, G. Bianco, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, X. Chen, M. L. Chiofalo, A. Derevianko, W. Ertmer, N. Gaaloul, P. Gill, P. W. Graham, J. M. Hogan, L. Iess, M. A. Kasevich, H. Katori, C. Klempt, X. Lu, L.-S. Ma, H. Müller, N. R. Newbury, C. W. Oates, A. Peters, N. Poli, E. M. Rasel, G. Rosi, A. Roura, C. Salomon, S. Schiller, W. Schleich, D. Schlippert, F. Schreck, C. Schubert, F. Sorrentino, U. Sterr, J. W. Thomsen, G. Vallone, F. Vetrano, P. Villoresi, W. von Klitzing, D. Wilkowski, P. Wolf, J. Ye, N. Yu, M. Zhan. SAGE: a proposal for a space atomic gravity explorer. Eur. Phys. J. D, 73, 228(2019).
[46] Y. Z. Wang. Atomic beam slowing by diffusive light in an integrating sphere(1979).
[47] W. Ketterle, A. Martin, M. A. Joffe, D. E. Pritchard. Slowing and cooling atoms in isotropic laser light. Phys. Rev. Lett., 69, 2483-2486(1992).
[48] H. Batelaan, S. Padua, D. H. Yang, C. Xie, R. Gupta, H. Metcalf. Slowing of 87Rb atoms with isotropic light. Phys. Rev. A, 49, 2780-2784(1994).
[49] M. Langlois, L. De Sarlo, D. Holleville, N. Dimarcq, J.-F. Schaff, S. Bernon. Compact cold-atom clock for onboard timebase: tests in reduced gravity. Phys. Rev. Appl., 10, 064007(2018).
[50] E. Guillot, P.-E. Pottie, N. Dimarcq. Three-dimensional cooling of cesium atoms in a reflecting copper cylinder. Opt. Lett., 26, 1639-1641(2001).
[51] H. J. Metcalf, P. van der Straten. Laser Cooling and Trapping(1999).
[52] X.-C. Wang, H.-D. Cheng, L. Xiao, B.-C. Zheng, Y.-L. Meng, L. Liu, Y.-Z. Wang. Measurement of spatial distribution of cold atoms in an integrating sphere. Chin. Phys. Lett., 29, 023701(2012).
[53] S. Trémine, E. de Clercq, P. Verkerk. Isotropic light versus six-beam molasses for Doppler cooling of atoms from background vapor: theoretical comparison. Phys. Rev. A, 96, 023411(2017).
[54] F.-X. Esnault, D. Holleville, N. Rossetto, S. Guerandel, N. Dimarcq. High-stability compact atomic clock based on isotropic laser cooling. Phys. Rev. A, 82, 033436(2010).
[55] P. Liu, Y. Meng, J. Wan, X. Wang, Y. Wang, L. Xiao, H. Cheng, L. Liu. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity. Phys. Rev. A, 92, 062101(2015).
[56] Y. Wang, Y. Meng, J. Wan, M. Yu, X. Wang, L. Xiao, H. Cheng, L. Liu. Optical-plus-microwave pumping in a magnetically insensitive state of cold atoms. Phys. Rev. A, 97, 023421(2018).
[57] W. D. Phillips. Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70, 721-741(1998).
[58] H. Metcalf. Entropy exchange in laser cooling. Phys. Rev. A, 77, 061401(2008).