• Laser & Optoelectronics Progress
  • Vol. 58, Issue 8, 0810025 (2021)
Shuo Li1、2, Yingdong Han1、2、*, Shuang Wang1、2, Kun Liu1、2, Junfeng Jiang1、2, and Tiegen Liu1、2
Author Affiliations
  • 1School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP202158.0810025 Cite this Article Set citation alerts
    Shuo Li, Yingdong Han, Shuang Wang, Kun Liu, Junfeng Jiang, Tiegen Liu. Algorithm for Eliminating Mismatched Points Based on Pearson Correlation Coefficient[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810025 Copy Citation Text show less
    Relationship between size of Pearson correlation coefficient and law of scatter distribution
    Fig. 1. Relationship between size of Pearson correlation coefficient and law of scatter distribution
    Using the length feature to detect mismatched points
    Fig. 2. Using the length feature to detect mismatched points
    Using the length feature and the angle feature together to detect mismatched points
    Fig. 3. Using the length feature and the angle feature together to detect mismatched points
    Flowchart of rough eliminating stage
    Fig. 4. Flowchart of rough eliminating stage
    Scatter diagram of confidence and selection of inflection point
    Fig. 5. Scatter diagram of confidence and selection of inflection point
    Method for selecting a threshold value of rough eliminating stage
    Fig. 6. Method for selecting a threshold value of rough eliminating stage
    Flowchart of refined eliminating stage
    Fig. 7. Flowchart of refined eliminating stage
    Results of contrast experiment 1. (a) Proposed algorithm; (b) MSAC algorithm; (c) PROSAC algorithm; (d) RANSAC algorithm
    Fig. 8. Results of contrast experiment 1. (a) Proposed algorithm; (b) MSAC algorithm; (c) PROSAC algorithm; (d) RANSAC algorithm
    Results of contrast experiment 2. (a) Proposed algorithm; (b) MSAC algorithm; (c) PROSAC algorithm; (d) RANSAC algorithm
    Fig. 9. Results of contrast experiment 2. (a) Proposed algorithm; (b) MSAC algorithm; (c) PROSAC algorithm; (d) RANSAC algorithm
    Results of contrast experiment 3. (a) Proposed algorithm; (b) MSAC algorithm; (c) PROSAC algorithm; (d) RANSAC algorithm
    Fig. 10. Results of contrast experiment 3. (a) Proposed algorithm; (b) MSAC algorithm; (c) PROSAC algorithm; (d) RANSAC algorithm
    Contrast experimentAlgorithmNumber of eliminated matched point pairsNumber of mismatched point pairsAccuracy
    Experiment 1MSAC44210.477
    PROSAC460.457
    RANSAC520.404
    Proposed algorithm230.913
    Experiment 2MSAC74460.622
    PROSAC830.554
    RANSAC800.575
    Proposed algorithm480.958
    Experiment 3MSAC1731170.676
    PROSAC1670.701
    RANSAC2030.576
    Proposed algorithm1340.873
    Table 1. Accuracy of different algorithms for eliminating mismatched points
    Contrast experimentMSACPROSACRANSACProposed algorithm
    Experiment 1931.898322.995939.1272719.902
    Experiment 21130.817410.0441126.3215937.923
    Experiment 31073.104293.6291045.4816728.902
    Table 2. Speed of different algorithms for eliminating mismatched points unit: ms
    Shuo Li, Yingdong Han, Shuang Wang, Kun Liu, Junfeng Jiang, Tiegen Liu. Algorithm for Eliminating Mismatched Points Based on Pearson Correlation Coefficient[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810025
    Download Citation