• Infrared and Laser Engineering
  • Vol. 48, Issue 10, 1005009 (2019)
Luo Min, Shi Yan, Zhou Hui, Li Song, Ma Yue, Zhang Wenhao, and Zhang Ying
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.1005009 Cite this Article
    Luo Min, Shi Yan, Zhou Hui, Li Song, Ma Yue, Zhang Wenhao, Zhang Ying. Waveform decompostion of lidar pulse based on the variable component parameter random sampling method[J]. Infrared and Laser Engineering, 2019, 48(10): 1005009 Copy Citation Text show less
    References

    [1] Allouis T, Durrieu S, Couteron P. A new method for incorporating hillslope effects to improve canopy-height estimates from large-footprint LIDAR waveforms[J]. IEEE Geoscience & Remote Sensing Letters, 2012, 9(4): 730-734.

    [2] Park T, Kennedy R E, Choi S, et al. Application of physically-based slope correction for maximum forest canopy height estimation using waveform LiDAR across different footprint sizes and locations: Tests on LVIS and GLAS[J]. Remote Sensing, 2014, 6(7): 6566-6586.

    [3] Clément Mallet, Frédéric Bretar, Roux M, et al. Relevance assessment of full-Waveform lidar data for urban area classification[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2011, 66(6): S71-S84.

    [4] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1989-1996.

    [5] Li Q. Decomposition of airborne laser scanning waveform data based on EM algorithm[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(PART B1): 211-218.

    [6] Hong-Chao M A. Modified EM algorithm and its application to the decomposition of laser scanning waveform data[J]. Journal of Remote Sensing, 2009, 13(1): 35-41.

    [7] Jung J, Crawford M M. A two-stage approach for decomposition of ICESat waveforms[C]//IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2009.

    [8] Slobbe D C, Lindenebergh. Estimation of volume change rates of Greenland′s ice sheet from ICESat data using overlapping footprints[J]. Remote Sensing of Environment, 2008, 112(12): 4204-4213.

    [9] Mallet C, ment, Lafarge F. A marked point process for modeling lidar waveforms[J]. IEEE Trans Image Process, 2010, 19(12): 3204-3221.

    [10] Zhao Quanhua, Li Hongying, Li Yu. Gaussian mixture model with variable components for full waveform LiDAR data decomposition and RJMCMC algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12): 1367-1377. (in Chinese)

    [11] Mallet C, Lafarge F, Roux M, et al. A marked point process for modeling lidar waveforms[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2010, 19(12): 3204-3221.

    [12] Gardner C S. Ranging performance of satellite laser altimeters[J]. IEEE Transactions on Geoscience & Remote Sensing, 1992, 30(5): 1061-1072.

    [13] Harding D J, Bufton J L, Frawley J J. Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness, and cloud cover[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(2): 329-339.

    CLP Journals

    [1] Tianhao Zhu, Hui Zhou, Yan Shi, Qianyin Zhang. Parameter extraction method on the multiple mode waveforms of satellite laser altimeter(Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210836

    [2] Yifan Huang, Yan He, Shanjiang Hu, Chunhe Hou, Xiaolei Zhu, Kaipeng Li, Fanghua Liu, Yongqiang Chen, Shouchuan Guo. Extracting sea water depth by image processing of ocean lidar[J]. Infrared and Laser Engineering, 2021, 50(6): 20211034

    Luo Min, Shi Yan, Zhou Hui, Li Song, Ma Yue, Zhang Wenhao, Zhang Ying. Waveform decompostion of lidar pulse based on the variable component parameter random sampling method[J]. Infrared and Laser Engineering, 2019, 48(10): 1005009
    Download Citation