• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 3, 517 (2022)
Shao-Bing XIONG1, Qin-Ye BAO1,*, and Jun-Hao CHU2
Author Affiliations
  • 1School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China
  • 2Department of Materials Science,Fudan University,Shanghai 200433,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.03.001 Cite this Article
    Shao-Bing XIONG, Qin-Ye BAO, Jun-Hao CHU. Recent progress on natural biomaterials boosting high-performance perovskite solar cells[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 517 Copy Citation Text show less
    References

    [1] W J Yin, T Shi, Y Yan. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater, 26, 4653-4658(2014).

    [2] J W Lee, D J Seol, A N Cho et al. High‐efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater, 26, 4991-4998(2014).

    [3] S D Stranks, G E Eperon, G Grancini et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341-344(2013).

    [4] G Xing, N Mathews, S Sun et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344-347(2013).

    [5] G E Eperon, S D Stranks, C Menelaou et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci, 7, 982-988(2014).

    [6] M Saliba, J P Correa Baena, M Grätzel et al. Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem., Int. Ed., 57, 2554-2569(2018).

    [7] Z Yang, A Surrente, K Galkowski et al. Unraveling the exciton binding energy and the dielectric constant in single-crystal methylammonium lead triiodide perovskite. J. Phys. Chem. Lett, 8, 1851-1855(2017).

    [8] NREL . Best Research-Cell Efficiencies, www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf, accessed: Sep. 2020.

    [9] Y Hou, X Du, S Scheiner et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 358, 1192-1197(2017).

    [10] Z Song, C L McElvany, A B Phillips et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci, 10, 1297-1305(2017).

    [11] J You, Z Hong, Y Yang et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 8, 1674-1680(2014).

    [12] P Wang, Y Wu, B Cai et al. Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv. Funct. Mater, 29, 1807661(2019).

    [13] Z Li, T R Klein, D H Kim et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater, 3, 18017(2018).

    [14] B Dou, J B Whitaker, K Bruening et al. Roll-to-roll printing of perovskite solar cells. ACS Energy Lett, 3, 2558-2565(2018).

    [15] J Feng, X Zhu, Z Yang et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater, 30, 1801418(2018).

    [16] J M Ball, A Petrozza. Defects in perovskite-halides and their effects in solar cells. Nat. Energy, 1, 16149(2016).

    [17] H Jin, E Debroye, M Keshavarz et al. It's a trap!On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz, 7, 397-410(2020).

    [18] G J A Wetzelaer, M Scheepers, A M Sempere et al. Trap‐assisted non‐radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater, 27, 1837-1841(2015).

    [19] C Ran, J Xu, W Gao et al. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev, 47, 4581-4610(2018).

    [20] G Landi, H C Neitzert, C Barone et al. Correlation between electronic defect states distribution and device performance of perovskite solar cells. Adv. Sci, 4, 1700183(2017).

    [21] Y Lin, Y Liu, S Chen et al. Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites. Energy Environ. Sci, 14, 1563-1572(2021).

    [22] J Yang, Q Hong, Z Yuan et al. Unraveling photostability of mixed cation perovskite films in extreme environment. Adv. Opt. Mater, 6, 1800262(2018).

    [23] J Yang, Z Yuan, X Liu et al. Oxygen-and water-induced energetics degradation in organometal halide perovskites. ACS Appl. Mater. Interfaces, 10, 16225-16230(2018).

    [24] J Yang, X Liu, Y Zhang et al. Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell. Nano Energy, 54, 218-226(2018).

    [25] M Stolterfoht, P Caprioglio, C M Wolff et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci, 12, 2778-2788(2019).

    [26] I Gelmetti, N F Montcada, A Pérez-Rodríguez et al. Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage. Energy Environ. Sci, 12, 1309-1316(2019).

    [27] J Yang, S Xiong, J Song et al. Energetics and energy loss in 2D Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater, 10, 2000687(2020).

    [28] H Li, G Wu, W Li et al. Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci, 6, 1901241(2019).

    [29] V M Arivunithi, S S Reddy, V G Sree et al. Efficiency exceeding 20% in perovskite solar cells with side-chain liquid crystalline polymer-doped perovskite absorbers. Adv. Energy Mater, 8, 1801637(2018).

    [30] X Zheng, Y Hou, C Bao et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy, 5, 131-140(2020).

    [31] A Rajagopal, K Yao, A K Y Jen. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater, 30, 1800455(2018).

    [32] Y Bai, X Meng, S Yang. Interface engineering for highly efficient and stable planar p‐i‐n perovskite solar cells. Adv. Energy Mater, 8, 1701883(2018).

    [33] M J Jeong, K M Yeom, S J Kim et al. Spontaneous interface engineering for dopant-free poly (3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy Environ. Sci, 14, 2419-2428(2021).

    [34] Z Liu, J Siekmann, B Klingebiel et al. Interface optimization via fullerene blends enables open‐circuit voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 solar cells. Adv. Energy Mater, 11, 2003386(2021).

    [35] D Y Son, S G Kim, J Y Seo et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc, 140, 1358-1364(2018).

    [36] M Abdi Jalebi, Z Andaji Garmaroudi, S Cacovich et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 555, 497-501(2018).

    [37] T H Han, J W Lee, C Choi et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun, 10, 520(2019).

    [38] L Zuo, H Guo, S Jariwala et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv, 3, e1700106(2017).

    [39] S Bai, P Da, C Li et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 571, 245-250(2019).

    [40] F Zhang, D Bi, N Pellet et al. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy Environ. Sci, 11, 3480-3490(2018).

    [41] M Irimia Vladu. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev, 43, 588-610(2014).

    [42] H Zhu, W Luo, P N Ciesielski et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev, 116, 9305-9374(2016).

    [43] C J Lee, Y C Chang, L W Wang et al. Biodegradable materials for organic field-effect transistors on a paper substrate. IEEE Electron Device Lett, 40, 236-239(2019).

    [44] W Li, Q Liu, Y Zhang et al. Biodegradable materials and green processing for green electronics. Adv. Mater, 32, 2001591(2020).

    [45] C Jin, J Nai, O Sheng et al. Biomass-based materials for green lithium secondary batteries. Energy Environ. Sci, 14, 1326-1379(2021).

    [46] M Zeng, X Wang, R Ma et al. Dopamine semiquinone radical doped PEDOT: PSS: enhanced conductivity, work function and performance in organic solar cells. Adv. Energy Mater, 10, 2000743(2020).

    [47] J Li, N Wang, Y Wang et al. Efficient inverted organic solar cells with a thin natural biomaterial L-Arginine as electron transport layer. Sol. Energy, 196, 168-176(2020).

    [48] R Wang, J Xue, K L Wang et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366, 1509-1513(2019).

    [49] J Yang, S Xiong, T Qu et al. Extremely low-cost and green cellulose passivating perovskites for stable and high-performance solar cells. ACS Appl. Mater. Interfaces, 11, 13491-13498(2019).

    [50] H S Lin, J M Lee, J Han et al. Denatured M13 bacteriophage‐templated perovskite solar cells exhibiting high efficiency. Adv. Sci, 7, 2000782(2020).

    [51] S Xiong, T Hao, Y Sun et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J. Energy Chem, 55, 265-271(2021).

    [52] Y Hou, K Wang, D Yang et al. Enhanced performance and stability in DNA-perovskite heterostructure-based solar cells. ACS Energy Lett, 4, 2646-2655(2019).

    [53] S Das, C Wu, Z Song et al. Bacteriorhodopsin enhances efficiency of perovskite solar cells. ACS Appl. Mater. Interfaces, 11, 30728-30734(2019).

    [54] L Xie, Z Cao, J Wang et al. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 74, 104846(2020).

    [55] K Zhu, Z Lu, S Cong et al. Ultraflexible and lightweight bamboo‐derived transparent electrodes for perovskite solar cells. Small, 15, 1902878(2019).

    [56] T Salim, S Sun, Y Abe et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A, 3, 8943-8969(2015).

    [57] G Li, K L Ching, J Y L Ho et al. Identifying the optimum morphology in high-performance perovskite solar cells. Adv. Energy Mater, 5, 1401775(2015).

    [58] R Wang, J Xue, L Meng et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule, 3, 1464-1477(2019).

    [59] B Chen, P N Rudd, S Yang et al. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev, 48, 3842-3867(2019).

    [60] L K Ono, S Liu, Y Qi. Reducing detrimental defects for high‐performance metal halide perovskite solar cells. Angew. Chem., Int. Ed., 59, 6676-6698(2020).

    [61] J M Azpiroz, E Mosconi, J Bisquert et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci, 8, 2118-2127(2015).

    [62] C Eames, J M Frost, P R Barnes et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun, 6, 7497(2015).

    [63] S Zhang, P E Shaw, G Zhang et al. Defect/interface recombination limited quasi-fermi level splitting and open-circuit voltage in mono-and triple-cation perovskite solar cells. ACS Appl. Mater. Interfaces, 12, 37647-37656(2020).

    [64] Q Wang, B Chen, Y Liu et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci, 10, 516-522(2017).

    [65] S Tan, M H Ilhan Yavuz, J W Lee et al. Shallow iodine defects accelerate the degradation of a-phase formamidinium perovskite. Joule, 4, 2426-2442(2020).

    [66] S Qiu, X Xu, L Zeng et al. Biopolymer passivation for high-performance perovskite solar cells by blade coating. J. Energy Chem, 54, 45-52(2021).

    [67] J Hu, X Xu, Y Chen et al. Overcoming photovoltage deficit via natural amino acid passivation for efficient perovskite solar cells and modules. J. Mater. Chem. A, 9, 5857-5865(2021).

    [68] D Cahen, A Kahn. Electron energetics at surfaces and interfaces: concepts and experiments. Adv. Mater, 15, 271-277(2003).

    [69] J M Yang, Y Luo, Q Bao et al. Recent advances in energetics and stability of metal halide perovskites for optoelectronic applications. Adv. Mater. Interfaces, 6, 1801351(2019).

    [70] Y Lin, B Chen, F Zhao et al. Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater, 29, 1700607(2017).

    [71] P Schulz, E Edri, S Kirmayer et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci, 7, 1377-1381(2014).

    [72] Q Wang, Y Shao, H Xie et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett, 105, 163508(2014).

    [73] P Cui, D Wei, J Ji et al. Highly efficient electron‐selective layer free perovskite solar cells by constructing effective p-n heterojunction. Sol. RRL, 1, 1600027(2017).

    [74] S Olthof, K Meerholz. Substrate-dependent electronic structure and film formation of MAPbI3 perovskites. Sci. Rep, 7, 40267(2017).

    [75] A Zohar, M Kulbak, I Levine et al. What limits the open-circuit voltage of bromide perovskite-based solar cells?. ACS Energy Lett, 4, 1-7(2019).

    [76] J Zhang, H Yu. Multifunctional dopamine-assisted preparation of efficient and stable perovskite solar cells. J. Energy Chem, 54, 291-300(2021).

    [77] S Xiong, Z Hou, S Zou et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule, 5, 467-480(2021).

    [78] H C Chen, C M Hung, C H Kuo. Synergistic engineering of natural carnitine molecules allowing for efficient and stable inverted perovskite solar cells. ACS Appl. Mater. Interfaces, 13, 8595-8605(2021).

    [79] S Xiong, J Song, J Yang et al. Defect‐passivation using organic dyes for enhanced efficiency and stability of perovskite solar cells. Sol. RRL, 4, 1900529(2020).

    [80] Q Dong, C Zhu, M Chen et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun, 12, 973(2021).

    [81] W Chen, B Han, Q Hu et al. Interfacial stabilization for inverted perovskite solar cells with long-term stability. Sci. Bull, 66, 991-1002(2021).

    [82] J Ning, Y Zhu, Z Hu et al. Gaining insight into the effect of organic interface layer on suppressing ion migration induced interfacial degradation in perovskite solar cells. Adv. Funct. Mater, 30, 2000837(2020).

    [83] L Hu, Q Zhao, S Huang et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun, 12, 466(2021).

    [84] S Xiong, M Yuan, J Yang et al. Engineering of the back contact between PCBM and metal electrode for planar perovskite solar cells with enhanced efficiency and stability. Adv. Opt. Mater, 7, 1900542(2019).

    [85] B Wang, J Yang, L Lu et al. Interface engineering of air-stable n-doping fullerene-modified TiO2 electron transport layer for highly efficient and stable perovskite solar cells. Adv. Mater. Interfaces, 7, 1901964(2020).

    [86] S Xiong, Y Dai, J Yang et al. Surface charge-transfer doping for highly efficient perovskite solar cells. Nano Energy, 79, 105505(2021).

    [87] J Lian, B Lu, F Niu et al. Electron‐transport materials in perovskite solar cells. Small Methods, 2, 1800082(2018).

    [88] W S Yang, J H Noh, N J Jeon et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234(2015).

    [89] J Jeong, M Kim, J Seo et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592, 381-385(2021).

    [90] T Leijtens, G E Eperon, S Pathak et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun, 4, 2885(2013).

    [91] S You, H Wang, S Bi et al. A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Adv. Mater, 30, 1706924(2018).

    [92] X Peng, H Lu, J Zhuang et al. Enhanced performance of perovskite solar cells using DNA-doped mesoporous-TiO2 as electron transporting layer. Sol. Energy, 206, 855-863(2020).

    [93] Y Zhang, X Liu, P Li et al. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy, 56, 733-740(2019).

    [94] B Wang, N Li, L Yang et al. Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells. J. Am. Chem. Soc, 143, 2207-2211(2021).

    [95] M Z Mokhtar, J He, M Li et al. Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells. Chem. Commun, 57, 994-997(2021).

    [96] W Ke, G Fang, Q Liu et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc, 137, 6730-6733(2015).

    [97] Q Jiang, L Zhang, H Wang et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy, 2, 1-7(2016).

    [98] H S Rao, B X Chen, W G Li et al. Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells. Adv. Funct. Mater, 25, 7200-7207(2015).

    [99] M Hou, H Zhang, Z Wang et al. Enhancing efficiency and stability of perovskite solar cells via a self-assembled dopamine interfacial layer. ACS Appl. Mater. Interfaces, 10, 30607-30613(2018).

    [100] G W Kim, Y Choi, H Choi et al. Novel cathode interfacial layer using creatine for enhancing the photovoltaic properties of perovskite solar cells. J. Mater. Chem. A, 8, 21721-21728(2020).

    [101] A A Said, J Xie, Q Zhang. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 15, 1900854(2019).

    [102] Z Hawash, L K Ono, Y Qi. Recent advances in Spiro‐MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells. Adv. Mater. Interfaces, 5, 1700623(2018).

    [103] H S Kim, C R Lee, J H Im et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep, 2, 591(2012).

    [104] M Li, Y Li, S i Sasaki et al. Dopant-free zinc chlorophyll aggregates as an efficient biocompatible hole transporter for perovskite solar cells. ChemSusChem, 9, 2862-2869(2016).

    [105] A R b M Yusoff, J Kim, J Jang et al. New horizons for perovskite solar cells employing DNA-CTMA as the hole-transporting material. ChemSusChem, 9, 1736-1742(2016).

    [106] Z Yu, L Sun. Inorganic hole-transporting materials for perovskite solar cells. Small Methods, 2, 1700280(2018).

    [107] K M Reza, S Mabrouk, Q Qiao. A review on tailoring PEDOT: PSS layer for improved performance of perovskite solar cells. Proc. Nat. Res. Soc, 2, 02004(2018).

    [108] Q Wang, C C Chueh, M Eslamian et al. Modulation of PEDOT:PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability. ACS Appl. Mater. Interfaces, 8, 32068-32076(2016).

    [109] J Huang, K X Wang, J J Chang et al. Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. J. Mater. Chem. A, 5, 13817-13822(2017).

    [110] Q Xue, M Liu, Z Li et al. Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities. Adv. Funct. Mater, 28, 1707444(2018).

    [111] D Yang, R Yang, S Priya et al. Recent advances in flexible perovskite solar cells: fabrication and applications. Angew. Chem., Int. Ed., 58, 4466-4483(2019).

    [112] J H Heo, D S Lee, D H Shin et al. Recent advancements in and perspectives on flexible hybrid perovskite solar cells. J. Mater. Chem. A, 7, 888-900(2019).

    [113] C Gao, S Yuan, K Cui et al. Flexible and biocompatibility power source for electronics: a cellulose paper based hole‐transport‐materials‐free perovskite solar cell. Sol. RRL, 2, 1800175(2018).

    [114] J Han, J S Nam, K Kim et al. M13 bacteriophage-templated gold nanowires as stretchable electrodes in perovskite solar cells. Adv. Mater, 2, 488-496(2021).

    Shao-Bing XIONG, Qin-Ye BAO, Jun-Hao CHU. Recent progress on natural biomaterials boosting high-performance perovskite solar cells[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 517
    Download Citation