[1] Hadfield R H. Singlephoton detects f optical quantum infmation applications[J]. Nature Photonics , 2009, 3: 696–705.
[2] M D Eisaman, J Fan, A Migdall, et al. Invited review article: Single-photon sources and detectors. Review of Scientific Instruments, 82, 071101(2011).
[3] Kameyama S, Yanagisawa T, o T, et al. Development of wind sensing coherent doppler lidar at mitsubishi electric cpation from late 1990s to 2013 [C]Abstracts Int Coherent Laser Radar Conf, 2013.
[4] J Zhang, M A Itzler, H Zbinden, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science & Applications, 4, e286(2015).
[5] Jiang Lianjun, Fang Yuqiang, Yu Chao, et al. Miniaturized freerunning InGaAsInP singlephoton detect (invited) [J]. Infrared Laser Engineering , 2023, 52(3): 20230017. (in Chinese).
[6] Zhang J, Eraerds P, Walenta N, et al. 2.23 GHz gating InGaAsInP singlephoton avalanche diode f quantum key distribution [C]Advanced Photon Counting Techniques IV, SPIE, 2010, 7681: 239246.
[7] M A Itzler, X Jiang, M Entwistle, et al. Advances in InGaAsP-based avalanche diode single photon detectors. Journal of Modern Optics, 58, 174-200(2011).
[8] T Lunghi, C Barreiro, O Guinnard, et al. Free-running single-photon detection based on a negative feedback InGaAs APD. Journal of Modern Optics, 59, 1481-1488(2012).
[9] Z Yan, D R Hamel, A K Heinrichs, et al. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode. Review of Scientific Instruments, 83, 073105(2012).
[10] C Yu, M Shangguan, H Xia, et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications. Optics Express, 25, 14611-14620(2017).
[11] C Yu, J Qiu, H Xia, et al. Compact and lightweight 1.5 μm lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector. Review of Scientific Instruments, 89, 6-14(2018).
[12] J Zhang, R Thew, J D Gautier, et al. Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1 550 nm with an active quenching ASIC. IEEE J Quantum Electron, 45, 792-799(2009).
[13] Yanli Shi, Yunxue Li, Rong Bai, et al. Advancement of shortwave infrared single-photon detectors(invited). Infrared and Laser Engineering, 52, 20220908(2023).
[14] X Jiang, M A Itzler, R Ben-Michael, et al. Afterpulsing effects in free-running InGaAsP single-photon avalanche diodes. IEEE Journal of Quantum Electronics, 44, 3-11(2007).
[15] S Cova, A Lacaita, G Ripamonti. Trapping phenomena in avalanche photodiodes on nanosecond scale. IEEE Electron Device Letters, 12, 685-687(1991).
[16] J G Rarity, T E Wall, K D Ridley, et al. Single-photon counting for the 1 300–1 600 nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes. Applied Optics, 39, 6746-6753(2000).
[17] Zhihong Guo, Liantuan Xiao. Photon statistical analyses for afterpulse probability. Shanxi Electronic Technology, 3-4(2007).
[18] L C Comandar, B Fröhlich, J F Dynes, et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1 550 nm. Journal of Applied Physics, 117, 083109(2015).
[19] W H Jiang, J H Liu, Y Liu, et al. 1.25 GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit. Optics Letters, 42, 5090-5093(2017).
[20] Y Q Fang, W Chen, T H Ao, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1 550 nm. Review of Scientific Instruments, 91, 083102(2020).