• Opto-Electronic Engineering
  • Vol. 44, Issue 5, 505 (2017)
Xiaobo Yuan1、2 and Chao Zhang1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.05.005 Cite this Article
    Xiaobo Yuan, Chao Zhang. An on-orbit calibration model for wide field of view star sensor based on the vector observations[J]. Opto-Electronic Engineering, 2017, 44(5): 505 Copy Citation Text show less
    References

    [1] Sun Gaofei, Zhang Guoyu, Zheng Ru, et al. Star sensor calibration research and development[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2010, 33(4): 8–14.

    [2] Li Xinlu, Yang Jinhua, Zhang Liu, et al. Attitude determination of the star sensor with the star proper motion correction[J]. Opto-Electronic Engineering, 2015, 42(2): 35–40.

    [3] Shuster M D, Chitre D M, Niebur D P. In-flight estimation of spacecraft attitude sensor accuracies and alignments[J]. Journal of Guidance, Control, and Dynamics, 1982, 5(4): 339–343.

    [4] Ju G. Autonomous star sensing, pattern identification, and attitude determination for spacecraft: an analytical and experimental study[D]. Texas: Texas A & M University, 2001: 99–131.

    [5] Samaan M A. Toward faster and more accurate star sensors using recursive centroiding and star identification[D]. Texas: Texas A&M University, 2003: 25–29.

    [6] Xing Fei, Dong Ying, Wu Yanpeng, et al. Star tracker parametric analysis for autonomous calibration[J]. Journal of Tsinghua University (Science and Technology), 2005, 25(11): 1484–1488.

    [7] Hao Xuetao, Zhang Guangjun, Jiang Jie. Star Sensor model parameter analysis and calibration method[J]. Opto-Electronic Engineering, 2005, 32(3): 5–8.

    [8] Xie Junfeng, Gong Jianya, Jiang Wanshou. An improved on-orbit calibration method for stellar camera[J]. Science of Surveying and Mapping, 2009, 34(2): 121–123.

    [9] Shen Juan, Zhang Guangjun, Wei Xinguo. On-orbit calibration of star sensor based on kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1220–1224.

    [10] Yuan Yulei. Research on fish-eye camera stellar calibration technology[D]. Zhengzhou: PLA Information Engineering University, 2012: 206–214.

    [11] Wei Xinguo, Zhang Guangjun, Fan Qiaoyun, et al. Star sensor calibration based on integrated modelling with intrinsic and extrinsic parameters[J]. Measurement, 2014, 55: 117–125.

    [12] Wang Shuang, Geng Yunhai, Jin Rongyu. A novel error model of optical systems and an on-orbit calibration method for star sensors[J]. Sensors, 2015, 15(12): 31428–31441.

    [13] Xiong Kun, Wei Xinguo, Zhang Guangjun, et al. High-accuracy star sensor calibration based on intrinsic and extrinsic parameter decoupling[J]. Optical Engineering, 2015, 54(3): 034112.

    [14] Zhan Yinhu, Zheng Yong, Zhang Chao, et al. Fish-eye camera calibration model based on vector observations and its application[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 332–338.

    [15] Zeng Wenxian, Tao Benzao. Non-linear adjustment model of three-dimensional coordinate transformation[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 566–568.

    [16] Yuan Yulei, Jiang Lixing, Liu Lingjie. Applications of Lodrigues matrix in coordinates transformation[J]. Science of Surveying and Mapping, 2010, 35(2): 178–179, 119.

    Xiaobo Yuan, Chao Zhang. An on-orbit calibration model for wide field of view star sensor based on the vector observations[J]. Opto-Electronic Engineering, 2017, 44(5): 505
    Download Citation