• Acta Photonica Sinica
  • Vol. 50, Issue 10, 1016001 (2021)
Long LI1、3, Pei ZHANG1、3, Jiaqi HAN1、3, and Tiejun CUI2、3、*
Author Affiliations
  • 1Key Laboratory of High Speed Circuit Design and EMC,Ministry of Education,School of Electronic Engineering,Xidian University,Xi'an 710071,China
  • 2State Key Laboratory of Millimeter Waves,Southeast University,Nanjing 210096,China
  • 3Center of Intelligent Metamaterials,Pazhou Laboratory,Guangzhou 510330,China
  • show less
    DOI: 10.3788/gzxb20215010.1016001 Cite this Article
    Long LI, Pei ZHANG, Jiaqi HAN, Tiejun CUI. Key Technologies of Microwave Wireless Power Transfer and Energy Harvesting Based on Electromagnetic Metamaterials(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1016001 Copy Citation Text show less
    References

    [1] J GARNICA, R A CHINGA, J LIN. Wireless power transmission: from far field to near field. Proceedings of the IEEE, 101, 1321-1331(2013).

    [2] N SHINOHARA. Power without wires. IEEE Microwave Magazine, 12, 64-73(2011).

    [3] A KURS, A KARALIS, R MOFFATT et al. Wireless power transfer via strongly coupled magnetic resonances. Science, 317, 83-86(2007).

    [4] Z ZHANG, H PANG, A GEORGIADIS et al. Wireless power transfer—an overview. IEEE Transactions on Industrial Electronics, 66, 1044-1058(2019).

    [5] F MUSAVI, W EBERLE. Overview of wireless power transfer technologies for electric vehicle battery charging. IET Power Electronics, 7, 60-66(2014).

    [6] Liang TANG, Yuanchang ZHONG, Chengxiang ZHANG et al. Research situation and development trend of laser wireless power transmission key technology. Laser Journal, 28-32(2017).

    [7] W C BROWN. The history of power transmission by radio waves. IEEE Transactions on Microwave Theory Techniques, 32, 1230-1242(1984).

    [8] W C BROWN. Adapting microwave techniques to help solve future energy problems. IEEE Transactions on Microwave Theory and Techniques, 21, 753-763(2010).

    [9] P E GLASER. Power from the sun: its future. Science, 162, 857-886(1968).

    [10] B Y DUAN. The updated ssps-omega design project and the latest development of China.

    [11] I G MORABITO. The internet of things: a survey. Computer Networks, 54, 2787-2805(2010).

    [12] S PRIYA, D J INMAN. Energy harvesting technologies. Springer US(2009).

    [13] S KIM, R VYAS, J BITO et al. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102, 1649-1666(2014).

    [14] V G VESELAGO. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 10, 509-514(1968).

    [15] J B PENDRY, A J HOLDEN, D J ROBBINS et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [16] N YU, P GENEVET, M A KATS et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [17] T J CUI, M Q QI, X WAN et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications, 3, e218(2014).

    [18] J ZHAO, X YANG, J Y DAI et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. National Science Review, 6, 231-238(2019).

    [19] J, SHERMAN. Properties of focused apertures in the Fresnel region. IRE Transactions on Antennas and Propagation, 10, 399-408(1962).

    [20] R C HANSEN. Focal region characteristics of focused array antennas. IEEE Transactions on Antennas and Propagation, 33, 1328-1337(1985).

    [21] L SHAFAI, A A KISHK, A SEBAK. Near field focusing of apertures and reflector antennas.

    [22] J BOR, S CLAUZIER, O LAFOND et al. 60GHz foam-based antenna for near-field focusing. Electronics Letters, 50, 571-572(2015).

    [23] A BUFFI, P NEPA, G MANARA. Design criteria for near-field-focused planar arrays. IEEE Antennas and Propagation Magazine, 54, 40-50(2012).

    [24] K D STEPHAN, J B MEAD, D M POZAR et al. A near field focused microstrip array for a radiometric temperature sensor. IEEE Transactions on Antennas and Propagation, 55, 1199-1203(2007).

    [25] F TOFIGH, J NOURINIA, M N AZARMANESH et al. Near-field focused array microstrip planar antenna for medical applications. IEEE Antennas and Wireless Propagation Letters, 13, 951-954(2014).

    [26] R SIRAGUSA, P LEMAITRE-AUGER, S TEDJINI. Tunable near-field focused circular phase-array antenna for 5.8-GHz RFID applications. IEEE Antennas and Wireless Propagation Letters, 10, 33-36(2011).

    [27] I V MININ, O V MININ. Basic principles of Fresnel antenna arrays. Springer Berlin Heidelberg(2008).

    [28] S KARIMKASHI, A A KISHK. Focusing properties of Fresnel zone plate lens antennas in the near-field region. IEEE Transactions on Antennas and Propagation, 59, 1481-1487(2011).

    [29] J L G MEZ-TORNERO, D BLANCO, E RAJO-IGLESIAS et al. Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—part I: Concept, design and analysis theory. IEEE Transactions on Antennas and Propagation, 61, 3475-3485(2013).

    [30] A J MART NEZ-ROS, J LG MEZ-TORNERO, J MONZ-CABRERA. Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna. IEEE Transactions on Antennas and Propagation, 61, 2981-2990(2013).

    [31] H XU, G HU, L HAN et al. Chirality‐assisted high‐efficiency metasurfaces with independent control of phase, amplitude, and polarization. Advanced Optical Materials, 7, 1801479(2019).

    [32] H CHOU, T HUNG, N WANG et al. Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications. IEEE Transactions on Antennas and Propagation, 59, 1013-1018(2011).

    [33] S ZHANG, M H KIM, F AIETA et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Optics Express, 24, 18024-18034.

    [34] X WU, X XIA, J TIAN et al. Broadband reflective metasurface for focusing underwater ultrasonic waves with linearly tunable focal length. Applied Physics Letters, 108, 163502(2016).

    [35] O YURDUSEVEN, S YE, T FROMENTEZE et al. 3D conductive polymer printed metasurface antenna for Fresnel focusing. Designs, 3, 1-4(2019).

    [36] S YU, H LIU, L LI. Design of near-field focused metasurface for high-efficient wireless power transfer with multi-focus characteristics. IEEE Transactions on Industrial Electronics, 66, 3993-4002(2019).

    [37] P ZHANG, L LI, H LIU et al. Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer. IEEE Access, 7, 110387-110399(2019).

    [38] H XU, S MA, W LUO et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Applied Physics Letters, 109, 193506(2016).

    [39] O YURDUSEVEN, D L MARKS, J N GOLLUB et al. Design and analysis of a reconfigurable holographic metasurface aperture for dynamic focusing in the Fresnel zone. IEEE Access, 5, 15055-15065(2017).

    [40] Q MA, T CUI. Information metamaterials: bridging the physical world and digital world. PhotoniX, 1, 1(2020).

    [41] T CUI, S LIU, L LI. Information entropy of coding metasurface. Light: Science and Applications, 5, e16172(2016).

    [42] J HAN, L LI, X MA et al. Adaptively smart wireless power transfer using 2-bit programmable metasurface. IEEE Transactions on Industrial Electronics, 68(2021).

    [43] M A HASSAN, A A KISHK. Optically transparent reflectarray antenna design integrated with solar cells. IEEE Transactions on Antennas and Propagation, 64, 1700-1712(2016).

    [44] W AN, S XU, F YANG et al. A Ka-band reflectarray antenna integrated with solar cells. IEEE Transactions on Antennas and Propagation, 62, 5539-5546(2014).

    [45] N OUTALEB, J PINEL, M DRISSI et al. Microwave planar antenna with RF:puttered indium tin oxide films. Microwave and Optical Technology Letters, 24, 3-7(2000).

    [46] A KATSOUNAROS, Y HAO, N COLLINGS et al. Optically transparent antenna for ultra wide-band applications(2009).

    [47] C ZHANG, J YANG, W CAO et al. Transparently curved metamaterial with broadband millimeter wave absorption. Photonics Research, 478-485(2019).

    [48] B HONG, Q MA, G BAI et al. Optically transparent coding metasurfaces based on indium tin oxide films. Journal of Applied Physics, 124, 023102(2018).

    [49] J ZHAO, C ZHANG, T CUI et al. An optically transparent metasurface for broadband microwave antireflection. Applied Physics Letters, 112, 073504(2018).

    [50] G SONG, C ZHANG, T CUI. Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Optical Express, 26, 22916(2018).

    [51] L LI, P ZHANG, F CHENG et al. An optically transparent near-field focusing metasurface. IEEE Transactions on Microwave Theory and Techniques, 69, 2015-2027(2021).

    [52] F J BOSQUESPADILLA, L N LANDY, W K SMITH et al. Perfect metamaterial absorber. Physical Review Letters, 100, 207402(2008).

    [53] O M RAMAHI, T S ALMONEEF, M ALSHAREEF et al. Metamaterial particles for electromagnetic energy harvesting. Applied Physics Letters, 101, 173903(2012).

    [54] T S ALMONEEF, O M RAMAHI. Metamaterial electromagnetic energy harvester with near unity efficiency. Applied Physics Letters, 106, 153902(2015).

    [55] B ALAVIKIA, T S ALMONEEF, O M RAMAHI. Complementary split ring resonator arrays for electromagnetic energy harvesting. Applied Physics Letters, 107, 033902(2015).

    [56] B ALAVIKIA, T S ALMONEEF, O M RAMAHI. Wideband resonator arrays for electromagnetic energy harvesting and wireless power transfer. Applied Physics Letters, 107, 243902(2015).

    [57] H ZHONG, X YANG, X SONG et al. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer. Applied Physics Letters, 111, 213902(2017).

    [58] H ZHONG, X YANG, C TAN et al. Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting. Applied Physics Letters, 109, 253904(2016).

    [59] X ZHANG, H LIU, L LONG et al. Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting. Applied Physics Letters, 111, 071902(2017).

    [60] E KARAKAYA, F BAGCI, A E YILMAZ et al. Metamaterial-based four-band electromagnetic energy harvesting at commonly used GSM and Wi-Fi frequencies. Journal of Electronic Materials, 48, 2307-2316(2019).

    [61] S SHUAI, S YANG, L JING et al. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves. Journal of Applied Physics, 120, 045106(2016).

    [62] X ZHANG, H LIU, L LI. Electromagnetic power harvester using wide-angle and polarization-insensitive metasurfaces. Applied Sciences, 8, 497(2018).

    [63] F YU, G HE, X YANG et al. Polarization-insensitive metasurface for harvesting electromagnetic energy with high efficiency and frequency stability over wide range of incidence angles. Applied Sciences, 10, 8047(2020).

    [64] B GHADERI, V NAYYERI, M SOLEIMANI et al. Pixelated metasurface for dual-band and multi-polarization electromagnetic energy harvesting. Scientific Reports, 8, 13227(2018).

    [65] A GHANEIZADEH, K MAFINEZHAD, M JOODAKI. Design and fabrication of a 2D-isotropic flexible ultra-thin metasurface for ambient electromagnetic energy harvesting. AIP Advances, 9, 025304(2019).

    [66] X DUAN, C XING, Y ZHOU et al. Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle. IEEE Antennas and Wireless Propagation Letters, 17, 1617-1621(2018).

    [67] K T CHANDRASEKARAN, K AGARWAL, NASIMUDDIN et al. Compact dual-band metamaterial-based high-efficiency rectenna: an application for ambient electromagnetic energy harvesting. IEEE Antennas and Propagation Magazine, 62, 18-29(2020).

    [68] D FERREIRA, L SISMEIRO, A FERREIRA et al. Hybrid FSS and rectenna design for wireless power harvesting. IEEE Transactions on Antennas and Propagation, 64, 2038-2042(2016).

    [69] N ZHU, R W ZIOLKOWSKI, H XIN. A metamaterial-inspired, electrically small rectenna for high-efficiency, low power harvesting and scavenging at the global positioning system L1 frequency. Applied Physics Letters, 99, 114101(2011).

    [70] A M HAWKES, A R KATKO, S A CUMMER. A microwave metamaterial with integrated power harvesting functionality. Applied Physics Letters, 103, 163901(2013).

    [71] P XU, S WANG, G WEN. Design of an effective energy receiving adapter for microwave wireless power transmission application. AIP Advances, 6, 105010(2016).

    [72] X DUAN, X CHEN, L ZHOU. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency. AIP Advances, 6, 125020(2016).

    [73] G PEROTTO, S KEYROUZ, H J VISSER. Frequency selective surface for radio frequency energy harvesting applications. IET Microwaves Antennas and Propagation, 8, 523-531(2014).

    [74] R WANG, D YE, S DONG et al. Optimal matched rectifying surface for space solar power satellite applications. IEEE Transactions on Microwave Theory and Techniques, 62, 1080-1089(2014).

    [75] G T O TEKAM, V GINIS, J DANCKAERT et al. Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting. Applied Physics Letters, 110, 083901(2017).

    [76] K LEE, S K HONG. Rectifying metasurface with high efficiency at low power for 2.45 GHz band. IEEE Antennas and Wireless Propagation Letters, 19, 2216-2220(2020).

    [77] M BADAWE, T S ALMONEEF, O M RAMAHZ et al. A metasurface for conversion of electromagnetic radiation to DC. AIP Advances, 7, 035112(2017).

    [78] F ERKMEN, T S ALMONEEF, O M RAMAHI. Scalable electromagnetic energy harvesting using frequency-selective surfaces. IEEE Transactions on Microwave Theory and Techniques, 66, 2433-2441(2018).

    [79] T S ALMONEEF, F ERKMEN, M A ALOTAIBI et al. A new approach to microwave rectennas using tightly coupled antennas. IEEE Transactions on Antennas and Propagation, 66, 1714-1724(2018).

    [80] A Z ASHOOR, T S ALMONEEF, O M RAMAHI. A planar dipole array surface for electromagnetic energy harvesting and wireless power transfer. IEEE Transactions on Microwave Theory and Techniques, 66, 1553-1560(2017).

    [81] A Z ASHOOR, O M RAMAHI. Polarization-independent cross-dipole energy harvesting surface. IEEE Transactions on Microwave Theory and Techniques, 67, 1130-1137(2019).

    [82] M ALDHAEEBI, T ALMONEEF. Highly efficient planar metasurface rectenna. IEEE Access, 8, 214019-214029(2020).

    [83] L LI, X ZHANG, C SONG et al. Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer. IEEE Transactions on Microwave Theory and Techniques, 69, 1518-1528(2021).

    [84] M PINUELA, P D MITCHESON, S LUCYSZYN. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Transactions on Microwave Theory and Techniques, 61, 2715-2726(2013).

    [85] X LU, P WANG, D NIYATO et al. Wireless networks with RF energy harvesting: a contemporary survey. IEEE Communications Surveys and Tutorials, 17, 757-789(2015).

    [86] K NIOTAKI, A COLLADO, A GEORGIADIS et al. Solar/electromagnetic energy harvesting and wireless power transmission. Proceedings of the IEEE, 102, 1712-1722(2014).

    [87] J BITO, R BAHR, J G HESTER et al. A novel solar and electromagnetic energy harvesting system with a 3D printed package for energy efficient internet-of-things wireless sensors. IEEE Transactions on Microwave Theory and Techniques, 65, 1831-1842(2017).

    [88] Y ZHANG, S SHEN, C CHIU et al. Hybrid RF-solar energy harvesting systems utilizing transparent multiport micro-meshed antennas. IEEE Transactions on Microwave Theory and Techniques, 67, 4534-4546(2019).

    [89] L ZHANG, Q CHEN, S LIU et al. Space-time-coding digital metasurfaces. Nature Communications, 9, 4334(2018).

    [90] L ZHANG, Z WANG, R SHAO et al. Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface. IEEE Transactions on Antennas and Propagation, 68, 2984-2992(2020).

    [91] H YANG, X CAO, F YANG et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Scientific Reports, 6, 35692(2016).

    [92] G LIU, L LI, J HAN et al. Frequency-domain and spatial-domain reconfigurable metasurface. ACS Applied Materials Interfaces, 12, 23554-23564(2020).

    [93] Q MA, Q HONG, G BAI et al. Editing arbitrarily linear polarizations using programmable metasurface. Physics Review Applied, 13, 021003(2020).

    [94] Q MA, C SHI, G BAI et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit. Advanced Optical Materials, 5, 1700548(2017).

    [95] J HAN, L LI, S TIAN et al. Millimeter-wave imaging using 1-bit programmable metasurface: Simulation model, design, and experiment. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10, 52-61(2020).

    [96] L LI, T CUI, W JI et al. Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications, 8, 197(2017).

    [97] W TANG, M CHEN, J DAI et al. Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design. IEEE Wireless Communications, 27, 180-187(2020).

    [98] H ZHAO, Y SHUANG, M WEI et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Wi signals. Nature Communications, 11, 3926(2020).

    [99] Q MA, G BAI, H JING et al. Smart metasurface with self-adaptively reprogrammable functions. Light: Science & Applications, 8, 98(2019).

    [100] L LI, Y SHUANG, Q MA et al. Intelligent metasurface imager and recognizer. Light: Science & Applications, 8, 97(2019).

    [101] L LI, H RUAN, C LIU et al. Machine-learning reprogrammable metasurface imager. Nature Communications, 10, 1082(2019).

    [102] B CLERCKX, R ZHANG, R SCHOBER et al. Fundamentals of wireless information and power transfer: from rf energy harvester models to signal and system designs. IEEE Journal on Selected Areas in Communications, 37, 4-33(2019).

    [103] S BI, C HO, R ZHANG. Wireless powered communication: opportunities and challenges. IEEE Communications Magazine, 53, 117-125(2015).

    Long LI, Pei ZHANG, Jiaqi HAN, Tiejun CUI. Key Technologies of Microwave Wireless Power Transfer and Energy Harvesting Based on Electromagnetic Metamaterials(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1016001
    Download Citation