• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 2, 191 (2020)
Yu-Ping ZHANG1, Li-Bin TANG1、*, Yu-Fei LIU2, Kar Seng Teng3、*, Gang WU1, Wei-Da HU4, and Fu-Zhong HAN1
Author Affiliations
  • 1Kunming Institute of Physics, Kunming650223, China
  • 2Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Chongqing 400044, China,3. College of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom,4. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai00083, China
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.02.007 Cite this Article
    Yu-Ping ZHANG, Li-Bin TANG, Yu-Fei LIU, Kar Seng Teng, Gang WU, Wei-Da HU, Fu-Zhong HAN. The research progress and application of novel terahertz detectors[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 191 Copy Citation Text show less
    References

    [1] R R Hartmann, J Kono, M E Portnoi. Terahertz science and technology of carbon nanomaterials. Nanotechnology, 25, 322001(2014).

    [4] T M Klapwijk, A V Semenov. Engineering Physics of Superconducting Hot-Electron Bolometer Mixers. PP(, 99, 1-22(2017).

    [5] J Liu, J Dai, S L Chin. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases, 1-2(2010).

    [6] W Terashima, H Hirayama. 9483. Proceedings of SPIE-The International Society for Optical Engineering(2015).

    [7] F Sizov, A Rogalski. THz detectors. Progress in Quantum Electronics, 34, 278-347(2010).

    [9] R Müller, W Bohmeyer, M Kehrt. Novel detectors for traceable THz power measurements. Journal of Infrared Millimeter & Terahertz Waves, 35, 659-670(2014).

    [10] O Mitrofanov, T S Luk, I Brener. Plasmonic enhancement of sensitivity in terahertz (THz) photo-conductive detectors, 95850N(2015).

    [11] M Créidhe. - 141 p(2012).

    [12] J Yang, H Qin, K Zhang. Emerging terahertz photodetectors based on two-dimensional materials. Optics Communications, 406, 36-43(2018).

    [13] A Kawakami, H Shimakage, J Korikawa. Design and fabrication for the construction of MIR HEB mixers. PP(, 99, 1-1(2016).

    [14] J A Russer, C Jirauschek, G P Szakmany. High-speed antenna-coupled terahertz thermocouple detectors and mixers. IEEE Transactions on Microwave Theory & Techniques, 63, 4236-4246(2015).

    [15] F Hu, J Sun, H E Brindley. Systems analysis for thermal infrared “THz Torch”applications. Journal of Infrared Millimeter & Terahertz Waves, 36, 474-495(2015).

    [16] W Li, Z Liang, J Wang. A direct method of thermal time constant measurement for lithium tantalate based terahertz pryroelectric detectors. Journal of Materials Science Materials in Electronics, 27, 1-7(2016).

    [17] T K Nguyen, W T Kim, B J Kang. Photoconductive dipole antennas for efficient terahertz receiver. Optics Communications, 383, 50-56(2017).

    [18] K Peng, P Parkinson, J L Boland. Broad band phase sensitive single InP nanowire photoconductive terahertz detectors. Nano Letters, 16, 4925-4931(2016).

    [19] K Peng, P Parkinson, L Fu. Single nanowire photoconductive terahertz detectors, 206(2015).

    [20] J D Sun. Field-effect self-mixing terahertz detectors. Springer Berlin Heidelberg(2016).

    [23] T Watanabe, S A Boubanga-Tombet, Y Tanimoto. InP-and GaAs-Based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging. IEEE Sensors Journal, 13, 89-99(2012).

    [24] J D Sun, Y F Sun, D M Wu. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Applied Physics Letters, 100, 465-9(2012).

    [25] C Franke, M Walther, M Helm. Two-photon quantum well infrared photodetectors below 6 THz. Infrared Physics & Technology, 70, 30-33(2015).

    [26] Z Z Zhang, Z L Fu, X G Guo. 4.3 THz quantum-well photodetectors with high detection sensitivity. Chin. Phys, 27, 030701(2018).

    [27] D Spirito, D Coquillat, S L D Bonis. High performance bilayer-graphene terahertz detectors. Applied Physics Letters, 104, 97-105(2014).

    [29] R Müller, B Gutschwager, J Hollandt. Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz. Journal of Infrared Millimeter & Terahertz Waves, 36, 654-661(2015).

    [30] V Mottamchetty, A K Chaudhary. Improvised design of THz spectrophotometer using LT-GaAs photoconductive antennas, pyroelectric detector and band-pass filters. Indian Journal of Physics, 90, 73-78(2016).

    [31] S Efthymiou, K B Ozanyan. Sensing of pulsed radiation with pyroelectric detectors, 1372-1376(2010).

    [32] S L Chen, Y C Chang, C Zhang. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite. Nature Photonics, 8, 537-542(2014).

    [34] H Liu, Z Chen, X Chen. Terahertz photodetector arrays based on a large scale MoSe2 monolayer. Journal of Materials Chemistry C, 4, 9399-9404(2016).

    [35] Y Liu, J Yin, P Wang. High-Performance Ultra-Broadband Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films. ACS applied materials & interfaces, 10, 36304-11(2018).

    [36] X He, N Fujimura, J M Lloyd. Carbon nanotube terahertz detector. Nano Letters, 14, 3953-3958(2014).

    [37] L Vicarelli, M S Vitiello, D Coquillat. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11, 865-71(2012).

    [38] H Qin, J Sun, Z He. Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling. Carbon, 121, 235-241(2017).

    [39] G Wanlong, W Lin, C Xiaoshuang. Graphene-based broadband terahertz detector integrated with a square-spiral antenna. Optics Letters, 43, 1647-50(2018).

    [40] C Liu, L Wang, X Chen. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection. Carbon, 130, 233-40(2018).

    [41] M Chen, Y Wang, J Wen. Annealing Temperature-Dependent Terahertz Thermal-Electrical Conversion Characteristics of Three-Dimensional Microporous Graphene. ACS applied materials & interfaces, 11, 6411-20(2019).

    [42] L Viti, J Hu, D Coquillat. Black Phosphorus Terahertz Photodetectors. Advanced Materials, 27, 5567-72(2015).

    [43] X Y Deng, X H Deng, F H Su. Broadband ultra-high transmission of terahertz radiation through monolayer MoS2. Journal of Applied Physics, 118, 224304(2015).

    [44] L Vitl, A Politano, K Zhang. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale, 11, 1995-2002(2019).

    [45] L Vitl, J Hu, D Coquillat. Heterostructured hBN-BP-hBN Nanodetectors at Terahertz Frequencies. Adv Mater, 28, 7390-6(2016).

    [46] W Tang, A Politano, C Guo. Ultrasensitive Room-Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator. Advanced Functional Materials, 28, 1801786(2018).

    [47] M R Brems, J Paaske, A M Lunde. Strain-enhanced optical absorbance of topological insulator films. Physical Review B, 97, 081402(2018).

    [48] A Lawal, A Shaari, R Ahmed. First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector. Physica B: Condensed Matter, 520(2017).

    [49] J Yang, W Yu, Z Pan. Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity. Small, 14, 1802598(2018).

    [50] W D Hu, L Wang, X S Chen. Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain. Optical & Quantum Electronics, 45, 713-720(2013).

    [51] H Spisser, A S Grimault-Jacquin, N Zerounian. Room-temperature AlGaN/GaN terahertz plasmonic detectors with a zero-bias grating. Journal of Infrared Millimeter & Terahertz Waves, 43, 1-15(2015).

    [53] Y Jiang, B B Jin, W W Xu. Terahertz detectors based on superconducting hot electron bolometers. Science China(Information Sciences), 55, 64-71(2012).

    [54] S Seliverstov, S Maslennikov, S Ryabchun. Fast and sensitive terahertz direct detectorbased on superconducting antenna-coupled hot electron bolometer. IEEE Transactions on Applied Superconductivity, 25, 1-4(2015).

    [55] X Chen, H Liu, Q Li. Terahertz detectors arrays based on orderly aligned InN nanowires. Scientific Reports, 5, 13199(2015).

    [56] K Saito, T Tanabe, Y Oyama. Terahertz-wave detection in a GaP-based hybrid waveguide using a nonlinear optical parametric process. Journal of the Optical Society of America B, 32, 708-713(2015).

    [57] W R Min, J S Lee, K S Kim. High-performance plasmonic THz detector based on asymmetric FET with vertically integrated antenna in CMOS technology. IEEE Transactions on Electron Devices, 63, 1742-1748(2016).

    [58] S Domingues, D Perenzoni, M Perenzoni. CMOS integrated lock-in readout circuit for FET terahertz detectors. Journal of Infrared Millimeter & Terahertz Waves, 38, 679-688(2017).

    [59] F Alves, D Grbovic, B Kearney. Bi-material terahertz sensors using metamaterial structures. Optics Express, 21, 13256-71(2013).

    [65] X G Peralta, S J Allen, M C Wanke. Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors. Applied Physics Letters, 81, 1627-1629(2002).

    [66] H X Wang, Z L Fu, D X Shao. Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well. Applied Physics Letters, 113, 171107(2018).

    [67] O A Klimenko, W Knap, B Iniguez. Temperature enhancement of terahertz responsivity of plasma field effect transistors. Journal of Applied Physics, 112, 2465-87(2012).

    [68] S P Han, H Ko, J W Park. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner. Optics Express, 21, 25874-82(2013).

    [69] M S Vitiello, L Viti, L Romeo. Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission. Applied Physics Letters, 100, 97(2012).

    [70] M S Vitiello, D Coquillat, L Viti. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. International Journal of High Speed Electronics & Systems, 12, 96-101(2012).

    [71] A Zak, M A Andersson, M Bauer. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Letters, 14, 5834(2014).

    [72] X Cai, A B Sushkov, R J Suess. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotechnology, 9, 814-9(2014).

    [73] M Mittendorff, S Winnerl, J Kamann. Ultrafast graphene-based broadband THz detector. Applied Physics Letters, 103, 666(2013).

    [74] F F Sizov, V P Reva, A G Golenkov. Uncooled detectors challenges for THz/sub-THz arrays imaging. Journal of Infrared Millimeter & Terahertz Waves, 32, 1192-1206(2011).

    [76] A Shurakov, Y Lobanov, G Goltsman. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical, applications. Superconductor Science & Technology, 29, 023001(2016).

    [77] E Giovine, R Casini, D Dominijanni. Fabrication of Schottky diodes for terahertz imaging. Microelectronic Engineering, 88, 2544-2546(2011).

    [78] J Darmo, D Dietze, M Martl. Nonorthodox heterodyne electro-optic detection for terahertz optical systems. Applied Physics Letters, 98, 161112(2011).

    [79] A Rogalski, F Sizov. Terahertz detectors and focal plane arrays. Opto-Electronics Review, 19, 346-404(2011).

    [80] G D Xu, C S Tsai. Novel integrated acousto-optic and electro-optic heterodyning device in a LiNbO3 waveguide. Applied Physics Letters, 58, 28(1991).

    [81] F Qiu, H Xu, Y Cao. Nonlinear optical materials: Synthesis, characterizations, thermal stability and electro-optical properties. Materials Characterization, 58, 275-283(2007).

    [83] D Klocke, A Schmitz, H Soltner. Infrared receptors in pyrophilous (“fire loving”) insects as model for new un-cooled infrared sensors. Beilstein Journal of Nanotechnology, 2, 186-197(2011).

    [84] R A Lewis. A review of terahertz detectors. : Appl. Phys, 52, 433001(2019).

    [85] X G Zhao, Y Wang, J Schalch. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers. ACS Photonics, 6, 830-837(2019).

    [86] C Y Wu, J YaoN. Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector. Applied Physics Express, 12, 052018(2019).

    [87] A Timofeev, J Luomahaara, L Grönberg. Optical and electrical characterization of a large kinetic inductance bolometer focal plane array. PP(, 99, 1-7(2017).

    [89] S A Maas. Nonlinear microwave and RF circuits. Artech House, 497-535(2003).

    [90] M Sakhno, A Golenkov, F Sizov. Uncooled detector challenges: Millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors. Journal of Applied Physics, 114, 1-4(2013).

    [91] S Preu, M Mittendorff, S Winnerl. THz Autocorrelators for ps pulse characterization based on Schottky Diodes and rectifying field-effect transistors. IEEE Transactions on Terahertz Science & Technology, 5, 922-929(2015).

    [92] S P Han, H Ko, J W Park. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner. Optics Express, 21, 25874-82(2013).

    [93] M Sakhno, F Sizov, A Golenkov. Uncooled THz/sub-THz rectifying detectors: FET vs. SBD. Journal of Infrared Millimeter & Terahertz Waves, 34, 798-814(2013).

    [94] L Viti, D Coquillat, A Politano. Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Letters, 16, 80-87(2015).

    [95] M Kushwaha. Resonant response of a field-effect transistor to an ac signal(2005).

    [96] W Knap, G Valušis, J Łusakowski. Field effect transistors for terahertz imaging. Journal of Infrared Millimeter & Terahertz Waves, 30, 1319-1337(2009).

    [97] M I Dyakonov. Generation and detection of terahertz radiation by field effect transistors. Comptes Rendus Physique, 11, 413-420(2012).

    [98] Y Kurita, G Ducournau, D Coquillat. Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics. Applied Physics Letters, 104, 380(2014).

    [99] D Coquillat, J Marczewski, P Kopyt. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction. Optics Express, 24, 272-81(2016).

    [100] M Shalaby, C Vicario, C P Hauri. Anomalous visualization of sub-2 THz photons on standard silicon CCD and COMS sensors. Physics(2015).

    [101] X Cui, C Yang, G J Tearney. Quantitative differential interference contrast (DIC) microscopy and photography based on wavefront sensors. US.

    [102] F Schuster, D Coquillat, H Videlier. Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Optics Express, 19, 7827-32(2011).

    [103] J Marczewski, W Knap, D Tomaszewski. Silicon junctionless field effect transistors as room temperature terahertz detectors. Journal of Applied Physics, 118(2015).

    [104] L.L. Slocombe, R Lewis. A. Electrical versus optical: comparing methods for detecting terahertz radiation using neon lamps. J Infrared Milli Terahz Waves, 39, 701(2018).

    [105] J Ezawa, H Matsuo, M Ukibe. Studies on terahertz photon counting detectors with low-leakage SIS junctions. Journal of Low Temperature Physics, 194, 426-432(2019).

    [107] G C Dyer, S Preu, G R Aizin. Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity. Applied Physics Letters, 100, 405(2012).

    [108] K R Jha, G Singh. Terahertz planar antennas for future wireless communication: A technical review. Infrared Physics & Technology, 60, 71-80(2013).

    [109] O Yurduseven, N Llombart, A Neto. A dual polarized antenna for THz space applications: Antenna design and lens optimization, 191-192(2014).

    [110] O Yurduseven, N Llombart, A Neto. A dual polarized antenna for THz space applications: Antenna design and lens optimization, 191-192(2014).

    [111] J Grzyb, R Al Hadi, U R Pfeiffer. Lens-integrated on-chip antennas for THz direct detectors in SiGe HBT technology, 2265-2266(2013).

    [112] J Liu, S Zou, Z Yang. Wave shape recovery for terahertz pulse field detection via photoconductive antenna. Optics Letters, 38, 2268(2013).

    [113] N Wang, M Jarrahi. Broadband heterodyne terahertz detector based on plasmonic photomixing. Terahertz Waves. IEEE, 1-2(2016).

    [114] D L Guo, J C Mou, M A Zhao-Hui. A broadband terahertz quasi-optical detector utilizing lens-based antenna. Journal of Infrared & Millimeter Waves, 4, 389-393(2016).

    [115] W Guo, L Wang, X Chen. Graphene-based broadband terahertz detector integrated with a square-spiral antenna. Optics Letters, 43, 1647-1650(2018).

    [116] M Bauer, A Rämer, S Boppel. High-sensitivity wideband THz detectors based on GaN HEMTs with integrated bow-tie antennas(2015).

    [119] Z Liu, L Liu, Z Zhang. Terahertz detector for imaging in 180 nm standard CMOS process. Science China(Information Sciences), 60, 082401(2017).

    [120] C Wang, J Y Qin, W D Xu. Terahertz Imaging Applications in Agriculture and Food Engineering: A Review. Transactions of the ASABE, 61, 411-24(2018).

    [121] J P Guillet, B Recur, H Balacey. Low-frequency noise effect on terahertz tomography using thermal detectors. Applied Optics, 54, 6758-62(2015).

    [124] T Kleine-Ostmann, T Nagatsuma. A review on terahertz communications research. Journal of Infrared Millimeter & Terahertz Waves, 32, 143-171(2011).

    Yu-Ping ZHANG, Li-Bin TANG, Yu-Fei LIU, Kar Seng Teng, Gang WU, Wei-Da HU, Fu-Zhong HAN. The research progress and application of novel terahertz detectors[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 191
    Download Citation