• Laser & Optoelectronics Progress
  • Vol. 52, Issue 9, 90002 (2015)
Jiang Meng*, Feng Qiaoling, Liang Tongli, Wei Yufeng, Wang Congying, Liang Hu, and He Yuanqing
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.090002 Cite this Article Set citation alerts
    Jiang Meng, Feng Qiaoling, Liang Tongli, Wei Yufeng, Wang Congying, Liang Hu, He Yuanqing. Recent Advances in Quartz-Enhanced Photoacoustic Spectrophone[J]. Laser & Optoelectronics Progress, 2015, 52(9): 90002 Copy Citation Text show less
    References

    [1] Wang Shutao, Che Rensheng, Wang Yutian, et al.. Study on optical fiber gas sensor based on photoacoustic effect[J]. Chinese J Lasers, 2004, 31(8): 979-982.

    [2] A A Kosterev, Y A Bakhirkin, F K Tittel. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80(1): 133-138.

    [3] A A Kosterev, G Wysocki, Y Bakhirkin, et al.. Application of quantum cascade lasers to trace gas analysis[J]. Applied Physics B, 2008, 90(2): 165-176.

    [4] S M Cristescu, S T Persijn, S T Hekkert, et al.. Laser-based systems for trace gas detection in life sciences[J]. Appl Phys B, 2008, 92(3): 343-349.

    [5] Kan Ruifeng, Liu Wenqing, Zhang Yujun, et al.. Tunable diode laser spectroscopy monitors the ambient methane with high sensitivity[J]. Chinese J Lasers, 2005, 32(9): 1217-1220.

    [6] Jiang Meng, Feng Qiaoling, Wei Yufeng, et al.. Recent advance in miniaturization of photo-acoustic spectroscopy gas sensor[J]. 2015, 52(2): 020006.

    [7] Liu Shanzheng, Zhang Wang, Yu Qingxu. Photoacoustic spectrometer based on the combination of tunable erbium doped fiber laser and erbium doped fiber amplifer[J]. Chinese J Lasers, 2009, 36(4): 964-967.

    [8] Zheng Dezhong, Zhao Nan. Design and experimental analysis of new photoacoustic cell[J]. Chinese J Lasers, 2014, 41(4): 0415002.

    [9] P Patimisco, G Scamarcio, FK Tittel, et al.. Quartz-enhanced photoacoustic spectroscopy: a review[J]. Sensors, 2014, 14: 6165-6206.

    [10] M D Wojcik, M C Phillips, B D Cannon, et al.. Gas-phase photoacoustic sensor at 8.41 mm using quartz tuning forks and amplitude-modulated quantum cascade lasers[J]. Applied Physics B, 2006, 85(2-3): 307-313.

    [11] S M Cristescu1, S T Persijn, S Telintel Hekkert, et al.. Laser-based systems for trace gas detection in life sciences[J]. Applied Physics B, 2008, 92(3): 343-349.

    [12] S Schilt, J P Besson, L Thevenaz, et al.. Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation[J]. Applied Physics B, 2006, 82(2): 319-329.

    [13] S Schilt, A A Kosterev, F K Tittel. Performance evaluation of a near infrared QEPAS based ethylene sensor[J]. Applied Physics B, 2009, 95(4): 813-824.

    [14] Sun Shanwen, Yi Hongming, Wang Guishi, et al.. Impact of water on quartz enhanced photoacoustic absorption spectroscopy methane sensor performance[J]. Chinese J Lasers, 2012, 39(7): 0715001.

    [15] K Liu, X Guo, H Yi, et al.. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2009, 34(10): 1594-1596.

    [16] K Liu, H Yi, A A Kosterev, et al.. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation[J]. Rev Sci Instrum. 2010, 81(10): 1-6.

    [17] Dong Lei, Ma Weiguang, Jia Suotang, et al.. Mid-IR ultra senstitive CO detection based on pulsed quartz enhanced photoaouctic spectroscopy[J]. Acta Optica Sinice, 2014, 34(1): 0130002.

    [18] Hongpeng Wu, Lei Dong, Wei Ren, et al.. Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical, 2015, 206: 364-370.

    [19] Dong Lei, A A Kosterev, D Thomazy, et al.. QEPAS spectrophones: design, optimization, and performance[J]. Applied Physics B, 2010, 100(3): 627-635.

    [20] Lin Cheng, Zhu Yong, Wei Wei, et al.. Quartz enhanced photoacoustic spectroscopy trace gas detection system based on the Fabry-Perot demodulation[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1163-1166.

    [21] N Petra, J Zweek, A A Kosterev, et al.. Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor [J]. Appl Phys B, 2009, 94(4): 673-680.

    [22] H Xuan, W Jin, S Liu, et al.. Long-period gratings in wavelength-scale microfibers[J]. Opt Lett 2010, 35(1): 85-87.

    [23] Y Cao, W Jin, L H Ho, et al.. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Opt Lett 2012, 37(2): 214-216.

    [24] S Borri, P Patimisco, A Sampaolo, et al.. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett 2013, 103(2): 1-4.

    [25] P Patimisco, S Borri, A Sampaolo, et al.. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser[J]. Analyst, 2014, 139: 2079-2087.

    [26] Li Jin, Wang Wei, Wang Xuefeng, et al.. Pivotal technology and development of photonic crystal fiber-optic gyroscope [J]. Navigation and Control, 2014, 13(1): 51-56.

    [27] Fu Xianjin, Yang Le. Design of wearable vital signs monitoring system based on wireless sensor network[J]. Navigation and Control, 2014, 13(2): 23-27.

    Jiang Meng, Feng Qiaoling, Liang Tongli, Wei Yufeng, Wang Congying, Liang Hu, He Yuanqing. Recent Advances in Quartz-Enhanced Photoacoustic Spectrophone[J]. Laser & Optoelectronics Progress, 2015, 52(9): 90002
    Download Citation