• Journal of Inorganic Materials
  • Vol. 36, Issue 3, 277 (2021)
Zhengming DONG1、2, Xiu LI2、3, Chen CHEN2、*, Minghe CAO1、*, and Zhiguo YI2
Author Affiliations
  • 11. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 22. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 33. College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
  • show less
    DOI: 10.15541/jim20200254 Cite this Article
    Zhengming DONG, Xiu LI, Chen CHEN, Minghe CAO, Zhiguo YI. Photostriction of NBT-BNT Ceramics[J]. Journal of Inorganic Materials, 2021, 36(3): 277 Copy Citation Text show less
    References

    [1] T FIGIELSKI. Photostriction effect in germanium. Physica Status Solidi (b), 1, 306-316(1961).

    [2] K UCHINO, M AIZAWA. Photostrictive actuator using PLZT ceramics. Japanese Journal of Applied Physics, 24, 139(1985).

    [3] B KUNDYS, M VIRET, D COLSON et al. Light-induced size changes in BiFeO3 crystals. Nature Materials, 9, 803(2010).

    [4] B KUNDYS. Photostrictive materials. Applied Physics Reviews, 2, 011301(2015).

    [5] C WEI T, P WANG H, Y LI T et al. Photostriction of CH3NH3PbBr3 perovskite crystals. Advanced Materials, 29, 1701789(2017).

    [6] C WEI T, P WANG H, J LIU H et al. Photostriction of strontium ruthenate. Nature Communications, 8, 15018(2017).

    [7] K UCHINO, M AIZAWA, S NOMURA L. Photostrictive effect in (Pb, La)(Zr, Ti)O3. Ferroelectrics, 64, 199-208(1985).

    [8] D SCHICK, M HERZOG, H WEN et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Physical Review Letters, 112, 097602(2014).

    [9] B KUNDYS, M VIRET, C MENY et al. Wavelength dependence of photoinduced deformation in BiFeO3. Physical Review B, 85, 092301(2012).

    [10] J LAGOWSKI, C GATOS H. Photomechanical effect in noncentrosymmetric semiconductors-CdS. Applied Physics Letters, 20, 14-16(1972).

    [11] R BUSCHERT J, R COLELLA. Photostriction effect in silicon observed by time-resolved X-ray diffraction. Solid State Communications, 80, 419-422(1991).

    [12] S GAYATHRI, S SRIDEVI, G SINGH et al. Investigation of fast and sizeable photostriction effect in tellurium thin films using fiber Bragg grating sensors. Sensors and Actuators A-Physical, 279, 688-693(2018).

    [13] C YANG J, D LIOU Y, Y TZENG W et al. Ultrafast giant photostriction of epitaxial strontium iridate film with superior endurance. Nano Letters, 18, 7742-7748(2018).

    [14] C PAILLARD, B XU, B DKHIL et al. Photostriction in ferroelectrics from density functional theory. Physical Review Letters, 116, 247401(2016).

    [15] Y YU, M NAKANO, T IKEDA. Directed bending of a polymer film by light. Nature, 425, 145-145(2003).

    [16] J WHITE T, J BROER D. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Materials, 14, 1087(2015).

    [17] Y YU. A light-fuelled wave machine. Nature, 546, 604(2017).

    [18] Z ZHANG, C REMSING R, H CHAKRABORTY et al. Light- induced dilation in nanosheets of charge-transfer complexes. Proceedings of the National Academy of Sciences, 115, 3776(2018).

    [19] M MIRVAKILI S, W HUNTER I. Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, 30, 1704407(2018).

    [20] S TZOU H, S CHOU C. Nonlinear opto-electromechanics and photodeformation of optical actuators. Smart Materials and Structures, 5, 230-235(1996).

    [21] K UCHINO. New applications of photostrictive ferroics. Materials Research Innovations, 1, 163-168(1997).

    [22] P POOSANAAS, K TONOOKA, K UCHINO. Photostrictive actuators. Mechatronics, 10, 467-487(2000).

    [23] H ZENG, P WASYLCZYK, S WIERSMA D et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Advanced Materials, 30, 1703554(2018).

    [24] Z WANG, K LI, Q HE et al. A light-powered ultralight tensegrity robot with high deformability and load capacity. Advanced Materials, 31, 1806849(2019).

    [25] Y MENG Z, U KUMAR, E CROSS L. Electrostriction in lead lanthanum zirconate-titanate ceramics. Journal of the American Ceramic Society, 68, 459-462(1985).

    [26] K TAKAGI, S KIKUCHI, F LI J et al. Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying. Journal of the American Ceramic Society, 87, 1477-1482(2004).

    [27] S MATZEN, L GUILLEMOT, T MAROUTIAN et al. Tuning ultrafast photoinduced strain in ferroelectric-based devices. Advanced Electronic Materials, 5, 1800709(2019).

    [28] H XIAO, W DONG, Y GUO et al. Design for highly piezoelectric and visible/near-infrared photoresponsive perovskite oxides. Advanced Materials, 31, 1805802(2019).

    [29] B KUNDYS, Y BUKHANTSEV, S VASILIEV et al. Three terminal capacitance technique for magnetostriction and thermal expansion measurements. Review of Scientific Instruments, 75, 2192-2196(2004).

    [30] H FINKELMANN, E NISHIKAWA, G PEREIRA G et al. A new opto-mechanical effect in solids. Physical Review Letters, 87, 015501(2001).

    [31] C CHEN, X LI, T LU et al. Reinvestigation of the photostrictive effect in lanthanum-modified lead zirconate titanate ferroelectrics. Journal of the American Ceramic Society, 103, 4074-4082(2020).

    Zhengming DONG, Xiu LI, Chen CHEN, Minghe CAO, Zhiguo YI. Photostriction of NBT-BNT Ceramics[J]. Journal of Inorganic Materials, 2021, 36(3): 277
    Download Citation