• Advanced Photonics
  • Vol. 2, Issue 2, 024001 (2020)
Yufeng Song1、†, Zhenhong Wang1, Cong Wang1, Krassimir Panajotov2、3, and Han Zhang1、*
Author Affiliations
  • 1Shenzhen University, Institute of Microscale Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Shenzhen, China
  • 2Vrije Universiteit Brussel, Department of Applied Physics and Photonics, Brussels Photonics, Brussels, Belgium
  • 3Bulgarian Academy of Sciences, Institute of Solid State Physics, Sofia, Bulgaria
  • show less
    DOI: 10.1117/1.AP.2.2.024001 Cite this Article Set citation alerts
    Yufeng Song, Zhenhong Wang, Cong Wang, Krassimir Panajotov, Han Zhang. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives[J]. Advanced Photonics, 2020, 2(2): 024001 Copy Citation Text show less
    References

    [1] F. Fedele. Rogue waves in oceanic turbulence. Phys. D-Nonlinear Phenom., 237, 2127-2131(2008).

    [2] K. Dysthe, H. E. Krogstad, P. Muller. Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287-310(2008).

    [3] V. Ruban et al. Rogue waves: towards a unifying concept? Discussions and debates. Eur. Phys. J.-Spec. Top., 185, 5-15(2010).

    [4] A. L. Islas, C. M. Schober. Predicting rogue waves in random oceanic sea states. Phys. Fluids, 17, 031701(2005).

    [5] D. R. Solli et al. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [6] W. M. Moslem et al. Dust-acoustic rogue waves in a nonextensive plasma. Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 84, 066402(2011).

    [7] Y. Y. Tsai, J. Y. Tsai, I. Lin. Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms. Nat. Phys., 12, 573-577(2016).

    [8] M. Shats, H. Punzmann, H. Xia. Capillary rogue waves. Phys. Rev. Lett., 104, 104503(2010).

    [9] J. Borhanian. Extraordinary electromagnetic localized structures in plasmas: modulational instability, envelope solitons, and rogue waves. Phys. Lett. A, 379, 595-602(2015).

    [10] G. P. Veldes et al. Electromagnetic rogue waves in beam–plasma interactions. J. Opt., 15, 064003(2013).

    [11] Z. Y. Yan. Vector financial rogue waves. Phys. Lett. A, 375, 4274-4279(2011).

    [12] Z. Y. Yan. Financial rogue waves. Commun. Theor. Phys., 54, 947-949(2010).

    [13] A. N. Pisarchik et al. Rogue waves in a multistable system. Phys. Rev. Lett., 107, 274101(2011).

    [14] J. M. Dudley et al. Instabilities, breathers and rogue waves in optics. Nat. Photonics, 8, 755-764(2014).

    [15] N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz. Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A, 373, 2137-2145(2009).

    [16] M. Onorato et al. Rogue waves: from nonlinear Schrodinger breather solutions to sea-keeping test. PLoS One, 8, e54629(2013).

    [17] D. Y. Tang et al. Dark soliton fiber lasers. Opt. Express, 22, 19831-19837(2014).

    [18] B. A. Malomed. Bound solitons in the nonlinear Schrodinger–Ginzburg-Landau equation. Phys. Rev. A, 44, 6954-6957(1991).

    [19] B. A. Malomed, L. Stenflo. Modulational instabilities and soliton solutions of a generalized nonlinear Schrodinger equation. J. Phys. A-Math. Gen., 24, L1149-L1153(1991).

    [20] D. Y. Tang et al. Temporal cavity soliton formation in an anomalous dispersion cavity fiber laser. J. Opt. Soc. Am. B-Opt. Phys., 31, 3050-3056(2014).

    [21] Y. F. Song et al. Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev., 6, 021313(2019).

    [22] J. Ma et al. Observation of dark-bright vector solitons in fiber lasers. Opt. Lett., 44, 2185-2188(2019).

    [23] X. Hu et al. Observation of incoherently coupled dark-bright vector solitons in single-mode fibers. Opt. Express, 27, 18311-18317(2019).

    [24] J. Guo et al. Observation of vector solitons supported by third-order dispersion. Phys. Rev. A, 99, 061802(R)(2019).

    [25] G. D. Shao et al. Soliton-dark pulse pair formation in birefringent cavity fiber lasers through cross phase coupling. Opt. Express, 23, 26252-26258(2015).

    [26] Y. F. Song et al. 280 GHz dark soliton fiber laser. Opt. Lett., 39, 3484-3487(2014).

    [27] V. I. Shrira, V. V. Geogjaev. What makes the Peregrine soliton so special as a prototype of freak waves?. J. Eng. Math., 67, 11-22(2010).

    [28] K. Hammani et al. Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett., 36, 112-114(2011).

    [29] B. Kibler et al. The Peregrine soliton in nonlinear fibre optics. Nat. Phys., 6, 790-795(2010).

    [30] H. Bailung, S. K. Sharma, Y. Nakamura. Observation of peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett., 107, 255005(2011).

    [31] B. Kibler et al. Peregrine soliton in optical fiber-based systems(2011).

    [32] M. Haelterman. Modulational instability, periodic-waves and black-and-white vector solitons in birefringent Kerr media. Opt. Commun., 111, 86-92(1994).

    [33] K. Tai, A. Hasegawa, A. Tomita. Observation of modulational instability in optical fibers. Phys. Rev. Lett., 56, 135-138(1986).

    [34] D. Y. Tang et al. GHz pulse train generation in fiber lasers by cavity induced modulation instability. Opt. Fiber Technol., 20, 610-614(2014).

    [35] L. F. Mollenauer, R. H. Stolen, J. P. Gordon. Experimental-observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett., 45, 1095-1098(1980).

    [36] J. M. Dudley et al. Self-similarity in ultrafast nonlinear optics. Nat. Phys., 3, 597-603(2007).

    [37] J. Soto-Crespo, P. Grelu, N. Akhmediev. Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers. Phys. Rev. E, 84, 016604(2011).

    [38] N. Akhmediev et al. Recent progress in investigating optical rogue waves. J. Opt., 15, 060201(2013).

    [39] S. H. Chen et al. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A-Math. Theor., 50, 463001(2017).

    [40] N. Akhmediev et al. Roadmap on optical rogue waves and extreme events. J. Opt., 18, 063001(2016).

    [41] J. M. Dudley et al. Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys., 1, 675-689(2019).

    [42] C. C. Mei et al. Theory and Applications of Ocean Surface Waves, 23(2005).

    [43] A. Chabchoub et al. The nonlinear Schrodinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface. Ann. Phys., 361, 490-500(2015).

    [44] J. M. Dudley, G. Genty, B. Eggleton. Optical rogue wave dynamics in supercontinuum generation(2008).

    [45] J. M. Dudley, G. Genty, B. J. Eggleton. Harnessing and control of optical rogue waves in supercontinuum generation. Opt. Express, 16, 3644-3651(2008).

    [46] G. Genty, B. Eggleton, J. M. Dudley. Dynamics and control of optical rogue waves in supercontinuum generation(2008).

    [47] D. R. Solli, C. Ropers, B. Jalali. Optical rogue waves and stimulated supercontinuum generation. Proc. SPIE, 7728, 772810(2010).

    [48] Q. Li et al. Control of optical rogue waves in supercontinuum generation with a minute continuous wave(2011).

    [49] S. T. Sorensen et al. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation. J. Opt. Soc. Am. B-Opt. Phys., 29, 2875-2885(2012).

    [50] M. Erkintalo, G. Genty, J. M. Dudley. Rogue-wave-like characteristics in femtosecond supercontinuum generation. Opt. Lett., 34, 2468-2470(2009).

    [51] D. R. Solli, C. Ropers, B. Jalali. Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett., 101, 233902(2008).

    [52] K. Krupa, K. Nithyanandan, P. Grelu. Vector dynamics of incoherent dissipative optical solitons. Optica, 4, 1239-1244(2017).

    [53] M. Liu et al. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device. Opt. Lett., 40, 4767-4770(2015).

    [54] M. Liu et al. Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser. Opt. Lett., 41, 3912-3915(2016).

    [55] S. Das Chowdhury et al. Rogue waves in a linear cavity Yb-fiber laser through spectral filtering induced pulse instability. Opt. Lett., 44, 2161-2164(2019).

    [56] Y. E. Monfared, S. A. Ponomarenko. Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering. Opt. Express, 25, 5941-5950(2017).

    [57] K. Hammani et al. Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers. Opt. Express, 16, 16467-16474(2008).

    [58] C. Lafargue et al. Direct detection of optical rogue wave energy statistics in supercontinuum generation. Electron. Lett., 45, 217-218(2009).

    [59] K. Hammani, C. Finot. Experimental signatures of extreme optical fluctuations in lumped Raman fiber amplifiers. Opt. Fiber Technol., 18, 93-100(2012).

    [60] J. Kasparian et al. Optical rogue wave statistics in laser filamentation. Opt. Express, 17, 12070-12075(2009).

    [61] C. Bonatto et al. Deterministic optical rogue waves. Phys. Rev. Lett., 107, 053901(2011).

    [62] F. Selmi et al. Spatiotemporal chaos induces extreme events in an extended microcavity laser. Phys. Rev. Lett., 116, 013901(2016).

    [63] G. D. Shao et al. Vector dark solitons in a single mode fibre laser. Laser Phys. Lett., 16, 085110(2019).

    [64] C. Zhao et al. Observation of chaotic polarization attractors from a graphene mode locked soliton fiber laser. Chin. Opt. Lett., 17, 020012(2019).

    [65] G. M. Wang et al. Indium selenide as a saturable absorber for a wavelength-switchable vector-soliton fiber laser. Opt. Mater. Express, 9, 449-456(2019).

    [66] D. Y. Tang et al. Soliton interaction in a fiber ring laser. Phys. Rev. E, 72, 016616(2005).

    [67] A. Komarov et al. Interaction of dissipative solitons under spectral and amplitude control of pulse wings in fiber lasers. Proc. SPIE, 6612, 661209(2007).

    [68] N. Akhmediev et al. Dissipative soliton interactions inside a fiber laser cavity. Opt. Fiber Technol., 11, 209-228(2005).

    [69] Y. F. Song et al. Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express, 24, 1814-1822(2016).

    [70] Y. Y. Luo et al. Real-time access to the coexistence of soliton singlets and molecules in an all-fiber laser. Opt. Lett., 44, 4263-4266(2019).

    [71] B. Ortac et al. Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser. Opt. Lett., 35, 1578-1580(2010).

    [72] S. Chouli, P. Grelu. Rains of solitons in a fiber laser. Opt. Express, 17, 11776-11781(2009).

    [73] Y. F. Song et al. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt. Express, 21, 10010-10018(2013).

    [74] K. Sulimany et al. Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser. Phys. Rev. Lett., 121, 133902(2018).

    [75] C. Y. Bao, X. S. Xiao, C. X. Yang. Soliton rains in a normal dispersion fiber laser with dual-filter. Opt. Lett., 38, 1875-1877(2013).

    [76] D. Y. Tang, L. M. Zhao, B. Zhao. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt. Express, 13, 2289-2294(2005).

    [77] Y. Takushima et al. 87 nm bandwidth noise-like pulse generation from erbium-doped fibre laser. Electron. Lett., 41, 399-400(2005).

    [78] A. F. J. Runge, N. G. R. Broderick, M. Erkintalo. Observation of soliton explosions in a passively mode-locked fiber laser. Optica, 2, 36-39(2015).

    [79] C. Lecaplain et al. Dissipative rogue wave generation in multiple-pulsing mode-locked fiber laser. J. Opt., 15, 064005(2013).

    [80] A. Zaviyalov et al. Rogue waves in mode-locked fiber lasers. Phys. Rev. A, 85, 013828(2012).

    [81] C. Lecaplain et al. Dissipative rogue waves through multi-pulse collisions in a fiber laser(2013).

    [82] A. F. J. Runge et al. Raman rogue waves in a partially mode-locked fiber laser. Opt. Lett., 39, 319-322(2014).

    [83] A. F. J. Runge et al. Raman rogue waves in a long cavity passively mode-locked fiber laser(2014).

    [84] M. I. Afzal, K. Alameh, Y. T. Lee. Blue-shifted rogue waves generation in normal dispersion fiber laser. IEEE Photonics Technol. Lett., 27, 2323-2326(2015).

    [85] L. Gao et al. Optical polarization rogue waves in fiber laser(2016).

    [86] H. Kbashi, S. A. Kolpakov, S. V. Sergeyev. Temporal scaling of optical rogue waves in unidirectional ring fiber laser(2016).

    [87] S. A. Kolpakov, H. Kbashi, S. V. Sergeyev. Dynamics of vector rogue waves in a fiber laser with a ring cavity. Optica, 3, 870-875(2016).

    [88] S. A. Kolpakov, H. J. Kbashi, S. Sergeyev. Slow optical rogue waves in a unidirectional fiber laser(2016).

    [89] J. S. Peng et al. Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser. Opt. Express, 24, 21256-21263(2016).

    [90] Z. R. Cai et al. Graphene-decorated microfiber photonic device for generation of rogue waves in a fiber laser. IEEE J. Sel. Top. Quantum Electron., 23, 20-25(2017).

    [91] P. H. Hanzard et al. Brillouin scattering-induced rogue waves in self-pulsing fiber lasers. Sci. Rep., 7, 45868(2017).

    [92] H. Kbashi et al. Vector rogue waves in a carbon nanotube mode-locked fiber laser(2017).

    [93] H. Kbashi et al. Bright-dark rogue wave in mode-locked fibre laser. Proc. SPIE, 10228, 102280P(2017).

    [94] A. Klein et al. Ultrafast rogue wave patterns in fiber lasers. Optica, 5, 774-778(2018).

    [95] Z. C. Luo et al. Optical rogue waves by random dissipative soliton buildup in a fiber laser. IEEE Photonics Technol. Lett., 30, 1803-1806(2018).

    [96] P. Wang et al. Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber. IEEE J. Sel. Top. Quantum Electron., 24, 1800207(2018). https://doi.org/10.1109/JSTQE.2017.2749972

    [97] S. Lee et al. Intermittent burst of a super rogue wave in the breathing multi-soliton regime of an anomalous fiber ring cavity. Opt. Express, 26, 11447-11457(2018).

    [98] S. Smirnov et al. Generation of spatio-temporal extreme events in noise-like pulses NPE mode-locked fibre laser. Opt. Express, 25, 23122-23127(2017).

    [99] S. Chen, J. M. Soto-Crespo, P. Grelu. Dark three-sister rogue waves in normally dispersive optical fibers with random birefringence. Opt. Express, 22, 27632-27642(2014).

    [100] S. Chen et al. Optical rogue waves in parametric three-wave mixing and coherent stimulated scattering. Phys. Rev. A, 92, 033847(2015).

    [101] S. Chen, J. M. Soto-Crespo, P. Grelu. Watch-hand-like optical rogue waves in three-wave interactions. Opt. Express, 23, 349-359(2015).

    [102] S. V. Sergeyev et al. Vector-resonance-multimode instability. Phys. Rev. Lett., 118, 033904(2017).

    [103] J. Peng, H. Zeng. Dynamics of soliton molecules in a normal-dispersion fiber laser. Opt. Lett., 44, 2899-2902(2019).

    [104] G. Genty et al. Collisions and turbulence in optical rogue wave formation. Phys. Lett. A, 374, 989-996(2010).

    [105] M. Erkintalo, G. Genty, J. M. Dudley. Giant dispersive wave generation through soliton collision. Opt. Lett., 35, 658-660(2010).

    [106] M. Taki et al. Third-order dispersion for generating optical rogue solitons. Phys. Lett. A, 374, 691-695(2010).

    [107] M. I. Kolobov et al. Third-order dispersion drastically changes parametric gain in optical fiber systems. Phys. Rev. A, 83, 035801(2011).

    [108] M. Horowitz, Y. Barad, Y. Silberberg. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Opt. Lett., 22, 799-801(1997).

    [109] Y. Chen et al. The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys. Lett., 11, 055101(2014).

    [110] A.-P. Luo et al. Noise-like pulse trapping in a figure-eight fiber laser. Opt. Express, 23, 10421-10427(2015).

    [111] Y. Mashiko, E. Fujita, M. Tokurakawa. Tunable noise-like pulse generation in mode-locked Tm fiber laser with a SESAM. Opt. Express, 24, 26515-26520(2016).

    [112] S. Liu et al. Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion. Photonics Res., 4, 318-321(2016).

    [113] Z.-S. Deng et al. Switchable generation of rectangular noise-like pulse and dissipative soliton resonance in a fiber laser. Opt. Lett., 42, 4517-4520(2017).

    [114] Y. Jeong et al. On the formation of noise-like pulses in fiber ring cavity configurations. Opt. Fiber Technol., 20, 575-592(2014).

    [115] L. Zhao et al. 120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser. Opt. Commun., 281, 157-161(2008).

    [116] L. Zhao, D. Tang. Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Appl. Phys. B, 83, 553-557(2006).

    [117] G. Sobon et al. Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser. Opt. Express, 24, 6156-6161(2016).

    [118] H. Chen et al. 0.4  μJ, 7 kW ultrabroadband noise-like pulse direct generation from an all-fiber dumbbell-shaped laser. Opt. Lett., 40, 5490-5493(2015). https://doi.org/10.1364/OL.40.005490

    [119] S.-S. Lin, S.-K. Hwang, J.-M. Liu. High-power noise-like pulse generation using a 1.56-μm all-fiber laser system. Opt. Express, 23, 18256-18268(2015).

    [120] K. Goda, B. Jalali. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics, 7, 102-112(2013).

    [121] Z.-R. Cai et al. Graphene-decorated microfiber photonic device for generation of rogue waves in a fiber laser. IEEE J. Sel. Top. Quantum Electron., 23, 20-25(2017).

    [122] L. Gao et al. Coherence loss of partially mode-locked fibre laser. Sci. Rep., 6, 24995(2016).

    [123] C. Lecaplain, P. Grelu. Rogue waves among noiselike-pulse laser emission: an experimental investigation. Phys. Rev. A, 90, 013805(2014).

    [124] Z. W. Liu, S. M. Zhang, F. W. Wise. Rogue waves in a normal-dispersion fiber laser. Opt. Lett., 40, 1366-1369(2015).

    [125] A. V. Kir’yanov, Y. O. Barmenkov, M. V. Andres. An experimental analysis of self-Q-switching via stimulated Brillouin scattering in an ytterbium doped fiber laser. Laser Phys. Lett., 10, 055112(2013).

    [126] Y. Panbhiharwala et al. Investigation of temporal dynamics due to stimulated Brillouin scattering using statistical correlation in a narrow-linewidth cw high power fiber amplifier. Opt. Express, 26, 33409-33417(2018).

    [127] D. Boukhaoui et al. Influence of higher-order stimulated Brillouin scattering on the occurrence of extreme events in self-pulsing fiber lasers. Phys. Rev. A, 100, 013809(2019).

    [128] C. Lecaplain et al. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett., 108, 233901(2012).

    [129] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics Rev., 6, 84-92(2012).

    [130] L. Gao et al. Polarization evolution dynamics of dissipative soliton fiber lasers. Photonics Res., 7, 1331-1339(2019).

    [131] J. S. Peng, H. P. Zeng. Build-up of dissipative optical soliton molecules via diverse soliton interactions. Laser Photonics Rev., 12, 1800009(2018).

    [132] H. J. Chen et al. Dynamical diversity of pulsating solitons in a fiber laser. Opt. Express, 27, 28507-28522(2019).

    [133] X. Q. Wang et al. Real-time observation of dissociation dynamics within a pulsating soliton molecule. Opt. Express, 27, 28214-28222(2019).

    [134] X. Q. Wang et al. Transient behaviors of pure soliton pulsations and soliton explosion in an L-band normal-dispersion mode-locked fiber laser. Opt. Express, 27, 17729-17742(2019).

    [135] Z. Wang et al. Buildup of incoherent dissipative solitons in ultrafast fiber lasers. Phys. Rev. Res., 2, 013101(2020).

    [136] M. Liu et al. Successive soliton explosions in an ultrafast fiber laser. Opt. Lett., 41, 1181-1184(2016).

    [137] Z. H. Wang et al. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser. Opt. Express, 24, 14709-14716(2016).

    [138] X. M. Liu, D. Popa, N. Akhmediev. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys. Rev. Lett., 123, 093901(2019).

    [139] J. S. Peng et al. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv., 5, eaax1110(2019).

    [140] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [141] K. Goda et al. Theory of amplified dispersive Fourier transformation. Phys. Rev. A, 80, 043821(2009).

    [142] A. Klein et al. Temporal depth imaging. Optica, 4, 502-506(2017).

    [143] B. H. Kolner, M. Nazarathy. Temporal imaging with a time lens. Opt. Lett., 14, 630-632(1989).

    [144] A. Tikan et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography. Nat. Photonics, 12, 228-234(2018).

    [145] P. Suret et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun., 7, 13136(2016).

    [146] M. Narhi et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun., 7, 13675(2016).

    [147] A. Klein, H. Duadi, M. Fridman. Ultrafast rogue waves in a vector field. Proc. SPIE, 10903, 109030D(2019).

    [148] B. Li et al. Unveiling femtosecond rogue-wave structures in noise-like pulses by a stable and synchronized time magnifier. Opt. Lett., 44, 4351-4354(2019).

    [149] S. Lee et al. Experimental spatio-temporal analysis on the shot-to-shot coherence and wave-packet formation in quasi-mode-locked regimes in an anomalous dispersion fiber ring cavity. Opt. Express, 25, 28385-28397(2017).

    [150] N. K. Fontaine et al. Real-time full-field arbitrary optical waveform measurement. Nat. Photonics, 4, 248-254(2010).

    [151] O. Pottiez et al. Statistical characterization of the internal structure of noiselike pulses using a nonlinear optical loop mirror. Opt. Commun., 377, 41-51(2016).

    [152] P. Ryczkowski et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221-227(2018).

    [153] S. V. Sergeyev et al. Slow deterministic vector rogue waves. Proc. SPIE, 9732, 97320K(2016).

    [154] Q. Bao et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [155] L. Kong et al. Black phosphorus as broadband saturable absorber for pulsed lasers from 1  μm to 2.7  μ[156] J. Li et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep., 6, 30361(2016).

    [157] J. Liu et al. Polarization domain wall pulses in a microfiber-based topological insulator fiber laser. Sci. Rep., 6, 29128(2016).

    [158] Y. Song et al. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express, 24, 25933-25942(2016).

    [159] Z. Wang et al. Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorberbased fiber laser. Opt. Eng., 55, 081314(2016). https://doi.org/10.1117/1.OE.55.8.081314

    [160] P. Li et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed . ACS Appl. Mater. Interfaces, 9, 12759-12765(2017). https://doi.org/10.1021/acsami.7b01709

    [161] B. Guo et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express, 26, 22750-22760(2018).

    [162] X. Zhu et al. TiS2-based saturable absorber for ultrafast fiber lasers. Photonics Res., 6, C44-C48(2018). https://doi.org/10.1364/PRJ.6.000C44

    [163] Y. M. Chang et al. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl. Phys. Lett., 97, 211102(2010).

    [164] Z. Sun et al. Ultrafast fiber laser mode-locked by graphene based saturable absorber(2010).

    [165] L. M. Zhao et al. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett., 35, 3622-3624(2010).

    [166] K. Wu et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun., 406, 214-229(2018).

    [167] N. A. A. Kadir et al. Transition metal dichalcogenides (WS2 and MoS2. Chin. Phys. Lett., 34, 014202(2017). https://doi.org/10.1088/0256-307X/34/1/014202

    [168] B. H. Chen et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2. Opt. Express, 23, 26723-26737(2015). https://doi.org/10.1364/OE.23.026723

    [169] Y. F. Song et al. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater., 4, 045010(2017).

    [170] J. Guo et al. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale, 11, 6235-6242(2019).

    [171] Y. Song et al. Lead monoxide: a promising two-dimensional layered material for applications in nonlinear photonics in the infrared band. Nanoscale, 11, 12595-12602(2019).

    [172] T. Chai et al. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 10, 17617-17622(2018).

    [173] D. Buccoliero et al. Midinfrared optical rogue waves in soft glass photonic crystal fiber. Opt. Express, 19, 17973-17978(2011).

    [174] L. Liu et al. Mid-infrared rogue wave generation in chalcogenide fibers. Proc. SPIE, 10100, 1010020(2017).

    [175] A. E. Akosman, M. Y. Sander. Route towards extreme optical pulsation in linear cavity ultrafast fibre lasers. Sci. Rep., 8, 13385(2018).

    [176] G. Pu et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 6, 362-369(2019).

    [177] M. Narhi et al. Machine learning analysis of extreme events in optical fibre modulation instability. Nat. Commun., 9, 4923(2018).

    [178] W. H. Renninger, F. W. Wise. Optical solitons in graded-index multimode fibres. Nat. Commun., 4, 1719(2013).

    [179] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [180] H. Q. Qin et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Opt. Lett., 43, 1982-1985(2018).

    [181] Y. H. Ding et al. Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers. Opt. Express, 27, 11435-11446(2019).

    [182] U. Tegin, B. Ortac. Spatiotemporal instability of femtosecond pulses in graded-index multimode fibers. IEEE Photonics Technol. Lett., 29, 2195-2198(2017).

    [183] K. Krupa et al. Spatial beam self-cleaning in multimode fibres. Nat. Photonics, 11, 237-241(2017).

    [184] G. Lopez-Galmiche et al. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm. Opt. Lett., 41, 2553-2556(2016).

    [185] C. Liu et al. Triggering extreme events at the nanoscale in photonic seas. Nat. Phys., 11, 358-363(2015).

    [186] S. H. Chen et al. Super chirped rogue waves in optical fibers. Opt. Express, 27, 11370-11384(2019).

    [187] C. J. Gibson, A. M. Yao, G. L. Oppo. Optical rogue waves in vortex turbulence. Phys. Rev. Lett., 116, 043903(2016).

    [188] J. Leach et al. Quantum correlations in optical angle-orbital angular momentum variables. Science, 329, 662-665(2010).

    [189] Z. Shen et al. Trapping and rotating of a metallic particle trimer with optical vortex. Appl. Phys. Lett., 109, 241901(2016).

    [190] M. P. J. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [191] H. R. Ren et al. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805-809(2016).

    [192] X. D. Qiu et al. Optical vortex copier and regenerator in the Fourier domain. Photonics Res., 6, 641-646(2018).

    [193] T. Wang et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J. Lightwave Technol., 35, 2161-2166(2017).

    [194] Y. Shen et al. Radially polarized cylindrical vector beam generation in all-fibre narrow linewidth single-longitudinal-mode laser. Laser Phys. Lett., 16, 055101(2019).

    [195] Y. Han et al. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings. Nanophotonics, 7, 287-293(2018).

    [196] Y. H. Zhao et al. Mode converter based on the long-period fiber gratings written in the two-mode fiber. Opt. Express, 24, 6186-6195(2016).

    [197] Z. W. Xie et al. Integrated (de)multiplexer for orbital angular momentum fiber communication. Photonics Res., 6, 743-749(2018).

    [198] D. Mao et al. Optical vortex fiber laser based on modulation of transverse modes in two mode fiber. APL Photonics, 4, 060801(2019).

    [199] F. Leo et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics, 4, 471-476(2010).

    [200] Y. Wang et al. Universal mechanism for the binding of temporal cavity solitons. Optica, 4, 855-863(2017).

    [201] J. K. Jang et al. Observation of dispersive wave emission by temporal cavity solitons. Opt. Lett., 39, 5503-5506(2014).

    [202] K. E. Webb et al. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett., 41, 4613-4616(2016).

    CLP Journals

    [1] Zhenhong Wang, Bin Zhang, Bing Hu, Zhongjun Li, Chunyang Ma, Yu Chen, Yufeng Song, Han Zhang, Jun Liu, Guohui Nie. Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics[J]. Photonics Research, 2020, 8(11): 1687

    [2] Dong Mao, Yang Zheng, Chao Zeng, Hua Lu, Cong Wang, Han Zhang, Wending Zhang, Ting Mei, Jianlin Zhao. Generation of polarization and phase singular beams in fibers and fiber lasers[J]. Advanced Photonics, 2021, 3(1): 014002

    [3] Jiazhu Wang, Liang Jin, Shangzhi Xie, Renyan Wang, He Zhang, Yingtian Xu, Xin Zhao, Yan Li, Xiaohui Ma. Vector dynamics of ultrafast cylindrical vector beams in a mode-locked fiber laser[J]. Chinese Optics Letters, 2021, 19(11): 111903

    [4] Jingsong He, Yufeng Song, C. G. L. Tiofack, M. Taki. Rogue wave light bullets of the three-dimensional inhomogeneous nonlinear Schrödinger equation[J]. Photonics Research, 2021, 9(4): 643

    [5] Weiqiang Wang, Leiran Wang, Wenfu Zhang. Advances in soliton microcomb generation[J]. Advanced Photonics, 2020, 2(3): 034001

    [6] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    Yufeng Song, Zhenhong Wang, Cong Wang, Krassimir Panajotov, Han Zhang. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives[J]. Advanced Photonics, 2020, 2(2): 024001
    Download Citation