• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516013 (2021)
Zhiqian Yin, Lü Pinshu, Zheng Zhu, and Yanmin Yang*
Author Affiliations
  • Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science & Technology, Hebei University, Baoding , Hebei 071002, China
  • show less
    DOI: 10.3788/LOP202158.1516013 Cite this Article Set citation alerts
    Zhiqian Yin, Lü Pinshu, Zheng Zhu, Yanmin Yang. Sunlight-Excited Inorganic UVC Upconversion Luminescent Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516013 Copy Citation Text show less
    References

    [1] Kneissl M, Seong T Y, Han J et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 13, 233-244(2019).

    [2] Chen R Z, Craik S A, Bolton J R. Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water[J]. Water Research, 43, 5087-5096(2009).

    [3] Li H, Cui Z Z, Chen W Q et al. Research progress on rare earth doped fluoride multiband upconversion laser[J]. Laser & Optoelectronics Progress, 57, 071601(2020).

    [4] Leverenz H W, Urbach F. Introduction to the luminescence of solids[J]. Physics Today, 3, 32-33(1950).

    [5] Auzel F. Comptes rendus hebdomadaires des seances de Lacademie des[EB/OL]. https://searchworks.stanford.edu/view/2893624

    [6] Auzel F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixte et dans un verre[J]. C. R. Acad. Sci., 262B, 1016-1019(1966).

    [7] Auzel F. Materials and devices using double-pumped-phosphors with energy transfer[J]. Proceedings of the IEEE, 61, 758-786(1973).

    [8] Auzel F. Spectral narrowing of excitation spectra in n-photons up-conversion processes by energy transfers[J]. Journal of Luminescence, 31/32, 759-761(1984).

    [9] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews, 104, 139-174(2004).

    [10] Hewes R A, Sarver J F. Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides[J]. Physical Review, 182, 427-436(1969).

    [11] Esterowitz L, Noonan J, Bahler J. Enhancement in a Ho3+-Yb3+ quantum counter by energy transfer[J]. Applied Physics Letters, 10, 126-127(1967).

    [12] Chen Z G, Chen H L, Hu H et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels[J]. Journal of the American Chemical Society, 130, 3023-3029(2008).

    [13] Qin W P, Cao C Y, Wang L L et al. Ultraviolet upconversion fluorescence from 6DJ of Gd3+ induced by 980 nm excitation[J]. Optics Letters, 33, 2167-2169(2008).

    [14] Wei Y C, Chen Q, Wu B Y et al. High-sensitivity in vivo imaging for tumors using a spectral up-conversion nanoparticle NaYF4∶Yb3+, Er3+ in cooperation with a microtubulin inhibitor[J]. Nanoscale, 4, 3901-3909(2012).

    [15] Nyk M, Kumar R, Ohulchanskyy T Y et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors[J]. Nano Letters, 8, 3834-3838(2008).

    [16] Sun Y, Liu Q, Peng J J et al. Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking[J]. Biomaterials, 34, 2289-2295(2013).

    [17] Liu C, Wang Z, Jia H et al. Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform[J]. Chemical Communications, 47, 4661-4663(2011).

    [18] Wang Z L, Hao J H, Chan H L W et al. Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in-vitro cell and nude mouse imaging[J]. Nanoscale, 3, 2175-2181(2011).

    [19] Dong B, Cao B, He Y et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides[J]. Advanced Materials, 24, 1987-1993(2012).

    [20] Lim S F, Riehn R, Ryu W S et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans[J]. Nano Letters, 6, 169-174(2006).

    [21] Xie Y L, Shen B, Zhou B S et al. Progress in research on rare-earth upconversion luminescent nanomaterials and bio-sensing[J]. Chinese Journal of Lasers, 47, 0207017(2020).

    [22] Li Z, Qian W N, Wei S M et al. Application of photothermal conversion nanomaterials in tumor photothermal therapy[J]. Laser & Optoelectronics Progress, 57, 170005(2020).

    [23] Cao C Y, Qin W P, Zhang J S et al. Ultraviolet upconversion emissions of Gd3+[J]. Optics Letters, 33, 857-859(2008).

    [24] Peng Y P, Lu W, Ren P P et al. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4∶Yb/Tm hexagonal nanocrystals[J]. Photonics Research, 6, 943-947(2018).

    [25] Wang T, Liu B T, Lin Y et al. Ultraviolet C lasing at 263 nm from Ba2LaF7∶Yb3+, Tm3+ upconversion nanocrystal microcavities[J]. Optics Letters, 45, 5986-5989(2020).

    [26] Xu X H, Lu W, Wang T et al. Deep UV random lasing from NaGdF4∶Yb3+, Tm3+ upconversion nanocrystals in amorphous borosilicate glass[J]. Optics Letters, 45, 3095-3098(2020).

    [27] Xu H L, Jiang Z K. Ultraviolet and violet upconversion luminescence in Er3+-doped yttrium aluminum garnet crystals[J]. Physical Review B, 66, 035103(2002).

    [28] Rátiva D J, de Araújo C B, Messaddeq Y. Energy transfer and frequency upconversion involving triads of Pr3+ ions in (Pr3+, Gd3+) doped fluoroindate glass[J]. Journal of Applied Physics, 99, 083505(2006).

    [29] Xu H L, Jiang Z K. Dynamics of visible-to-ultraviolet upconversion in YAlO3∶1% Er3+[J]. Chemical Physics, 287, 155-159(2003).

    [30] Hu C H, Sun C L, Li J F et al. Visible-to-ultraviolet upconversion in Pr3+∶Y2SiO5 crystals[J]. Chemical Physics, 325, 563-566(2006).

    [31] Li J F, Wang X L, Yang H G et al. Ultraviolet upconversion emission from ZBLAN glass doped with Tm3+ ions[J]. Physica B: Condensed Matter, 392, 251-254(2007).

    [32] Qin F, Zheng Y D, Yu Y et al. Ultraviolet upconversion luminescence in Er3+-doped Y2O3 excited by 532 nm CW compact solid-state laser[J]. Journal of Luminescence, 129, 1137-1139(2009).

    [33] Qin F, Zheng Y D, Yu Y et al. Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser[J]. Journal of Alloys and Compounds, 509, 1115-1118(2011).

    [34] Du Y Y, Wang Y F, Deng Z Q et al. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8 upconversion nanocrystals[J]. Advanced Optical Materials, 8, 1900968(2020).

    [35] Yang Y M, Jiao F Y, Su H X et al. Preparation and up-conversion efficiencies of Yb3+, Er3+ co-doped BaGd2ZnO5[J]. Chinese Journal of Luminescence, 33, 1319-1323(2012).

    [36] Pollnau M, Gamelin D R, Lüthi S R et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Physical Review B, 61, 3337-3346(2000).

    [37] Yang Y M, Jiao F Y, Li Z Q et al. Synthesis and upconversion luminescence properties of BaIn6Y2O13∶Yb3+, Er3+[J]. Spectroscopy and Spectral Analysis, 33, 325-329(2013).

    [38] Yang Y M, Jiao F Y, Su H X et al. Preparation and up-conversion luminescence dynamic process of Yb3+/Er3+ co-doped BaGd2ZnO5[J]. Spectroscopy and Spectral Analysis, 32, 2637-2641(2012).

    [39] Yang Y M, Mi C, Liu L L et al. Dynamic process of green upconversion emission from Ho3+ under square wave excitation[J]. Chinese Journal of Luminescence, 34, 866-871(2013).

    [40] Yang Y M, Mi C, Jiao F Y et al. A novel multifunctional upconversion phosphor: Yb3+/Er3+ codoped La2S3[J]. Journal of the American Ceramic Society, 97, 1769-1775(2014).

    [41] Wu J H, Zheng G J, Liu X F et al. Near-infrared laser driven white light continuum generation: materials, photophysical behaviours and applications[J]. Chemical Society Reviews, 49, 3461-3483(2020).

    [42] Cates E L, Cho M, Kim J H. Converting visible light into UVC: microbial inactivation by Pr3+-activated upconversion materials[J]. Environmental Science & Technology, 45, 3680-3686(2011).

    [43] Cates S L, Cates E L, Cho M et al. Synthesis and characterization of visible-to-UVC upconversion antimicrobial ceramics[J]. Environmental Science & Technology, 48, 2290-2297(2014).

    [44] Cates E L, Wilkinson A P, Kim J H. Visible-to-UVC upconversion efficiency and mechanisms of Lu7O6F9∶Pr3+ and Y2SiO5∶Pr3+ ceramics[J]. Journal of Luminescence, 160, 202-209(2015).

    [45] Cates E L, Li F F. Balancing intermediate state decay rates for efficient Pr3+ visible-to-UVC upconversion: the case of β-Y2Si2O7∶Pr3+[J]. RSC Advances, 6, 22791-22796(2016).

    [46] Yang Y, Mi C, Su X et al. Ultraviolet C upconversion fluorescence of trivalent erbium in BaGd2ZnO5 phosphor excited by a visible commercial light-emitting diode[J]. Optics Letters, 39, 2000-2003(2014).

    [47] Wu J H, Zheng H L, Liu X H et al. UVC upconversion material under sunlight excitation: LiYF4∶Pr3+[J]. Optics Letters, 41, 792-795(2016).

    [48] Yin Z Q, Yuan P, Zhu Z et al. Pr3+ doped Li2SrSiO4∶an efficient visible-ultraviolet C up-conversion phosphor[J]. Ceramics International, 47, 4858-4863(2021).

    [49] Yin Z Q, Zhu Z, Lü P et al. Luminescent properties of UVC up-conversion glassy phosphor: Li2SrSiO4 manufactured by containerless solidification[J]. Materials Letters, 291, 129613(2021).

    Zhiqian Yin, Lü Pinshu, Zheng Zhu, Yanmin Yang. Sunlight-Excited Inorganic UVC Upconversion Luminescent Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516013
    Download Citation