• Journal of Inorganic Materials
  • Vol. 35, Issue 8, 857 (2020)
Yun CHEN, Xusheng WANG*, Yanxia LI, and Xi YAO
Author Affiliations
  • School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • show less
    DOI: 10.15541/jim20190492 Cite this Article
    Yun CHEN, Xusheng WANG, Yanxia LI, Xi YAO. Dynamic Mechanical Analysis in the Investigation on Ferroelectrics[J]. Journal of Inorganic Materials, 2020, 35(8): 857 Copy Citation Text show less
    References

    [1] M DOMENJOUD, E BERTHELOT, N GALOPIN et al. Characterization of giant magnetostrictive materials under static stress: influence of loading boundary conditions. Smart Mater. Struct., 28, 095012(2019).

    [2] N LIU, M ACOSTA, S WANG et al. Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3- 0.25SrTiO3. Sci. Rep., 6, 36910(2016).

    [3] X LIU, X TAN. Giant strains in non-textured (Bi1/2Na1/2)TiO3- based lead-free ceramics. Adv. Mater., 28, 574-578(2016).

    [4] T LI, X LOU, X KE et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5) TiO3-based lead-free piezoceramics. Acta Mater., 128, 337-344(2017).

    [5] B T LESTER, T BAXEVANIS, Y CHEMISKY et al. Review and perspectives: shape memory alloy composite systems. Acta Mech., 226, 3907-3960(2015).

    [6] F NARITA, M FOX. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater., 20, 1700743(2018).

    [7] K G WEBBER, M VOEGLER, N H KHANSUR et al. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater. Struct., 26, 063001(2017).

    [8] S SADEGHPOUR, S MEYERS, J P KRUTH et al. Single-element omnidirectional piezoelectric ultrasound transducer for under water communication. Proceedings, 1, 363(2017).

    [9] H K MA, W F LUO, J Y LIN. Development of a piezoelectric micropump with novel separable design for medical applications. Sensor Actuat. A Phys., 236, 57-66(2015).

    [10] M ZHOU, R LIANG, Z ZHOU et al. Potentiality of Bi and Mn co-doped lead-free NaNbO3 ceramics as a pyroelectric material for uncooled infrared thermal detectors. J. Eur. Ceram. Soc., 39, 2058-2063(2019).

    [11] L E CROSS. Relaxor ferroelectric. Ferroelectrics, 76, 241-267(1987).

    [12] J B STEEVES, F S GOLINVEAUX. Using the ferroelectric/ ferroelastic effect at cryogenic temperatures for set-and-hold actuation. Smart Mater. Struct., 27, 065024(2018).

    [13] S Y KWEON, K LEE, Y PARK et al. Low-temperature sintering of (1-x)Pb(Zr0.53Ti0.47)O3-xBiYO3 ceramics with nano-powder for piezo-speaker. Jpn. J. Appl. Phys., 58, 051008(2019).

    [14] K MARAKAKIS, G K TAIRIDIS, P KOUTSIANITIS. Shunt piezoelectric systems for noise and vibration control: a review. Fron. Built Environ., 5, 64(2019).

    [15] J A B GRIPP, D A RADE. Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal PR., 112, 359-383(2018).

    [16] Z XU, Z CHEN, X HUNAG et al. Recent advances in multi- dimensional vibration mitigation materials and devices. Fron. Mater., 6, 00143(2019).

    [17] J H POYNTING. On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proceedings of the Royal Society of London. Series A, 82, 546-559(1909).

    [18] L M GUO. The advanced dynamic mechanical thermal analysis (DMTA) and its applications. Modern Scientific Instrumentation, 4, 57-60(1997).

    [19] Z LI, D SUN, B YAN et al. Fractional order model of viscoelastic suspension for crawler vehicle and its vibration suppression analysis. Transactions of the Chinese Society of Agricultural Engineering, 31, 72-79(2015).

    [22] H P MENARD. Dynamic Mechanical Analysis. Florida: CRC Press(2008).

    [23] F YAN, P BAO, Y WANG. Phase transition in relaxor ferroelectrics studied by mechanical measurements. Appl. Phys. Lett., 83, 4384-4386(2003).

    [24] F CORDERO. Hopping and clustering of oxygen vacancies in SrTiO3 by anelastic relaxation. Phys. Rev. B, 76, 172106(2007).

    [25] J C C A DIAZ, M VENET, F CORDERO et al. Anelastic and optical properties of Bi0.5Na0.5TiO3 and (Bi0.5Na0.5)0.94Ba0.06TiO3 lead- free ceramic systems doped with donor Sm 3+. J. Alloy. Compd., 746, 648-652(2018).

    [26] M ALGUERÓ, H JIMÉNEZ, AMORíN et al. Low temperature phenomena in ferroic BiMO3-PbTiO3(M: Mn and Sc). Appl. Phys. Lett., 98, 202904(2011).

    [27] D ZHANG, Y YAO, M FANG et al. Isothermal phase transition and the transition temperature limitation in the lead-free (1-x) Bi0.5Na0.5TiO3-xBaTiO3 system. Acta Mater., 103, 746-753(2016).

    [28] L ZHANG, X REN, M A CARPENTER. Influence of local strain heterogeneity on high piezoelectricity in 0.5Ba(Zr0.2Ti0.8)O3- 0.5(Ba0.7Ca0.3)TiO3 ceramics. Phys. Rev. B, 95, 054116(2017).

    [29] P SILVA, J DIAZ, FLORéNCIO et al. Analysis of the phase transitions in BNT-BT lead-free ceramics around morphotropic phase boundary by mechanical and dielectric spectroscopies. Arch. Metall. Mater., 61, 17-20(2016).

    [30] S UDDIN, G P ZHENG, Y LQBAL et al. Elastic softening near the phase transitions in (1-x)Bi1/2Na1/2TiO3-xBaTiO3 solid solutions. Mater. Res. Express, 1, 046102(2014).

    [31] S PUCHBERGER, V SOPRUNYUK, A MAJCHROWSKI et al. Domain wall motion and precursor dynamics in PbZrO3. Phys. Rev. B, 94, 214101(2016).

    [32] B CHENG, M GABBAY, G FANTOZZI. Anelastic relaxation associated with the motion of domain walls in barium titanate ceramics. J. Mater. Sci., 31, 4141-4147(1996).

    [33] B JIMÉNEZ, J VICENTE. Oxygen defects and low-frequency mechanical relaxation in Pb-Ca and Pb-Sm titanates. J. Phys. D Appl. Phys., 31, 446(1998).

    [34] E M BOURIM, H TANAKA, M GABBAY et al. Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics. J. Appl. Phys., 91, 6662-6669(2002).

    [35] Y CHEN, X S WANG, Y S LI et al. The low frequency relaxor properties of ferroelectric PZT-4 studied by DMA. J. Mater. Sci. Mater. Electron., 30, 1-9(2019).

    [36] Y CHEN, H H YE, X S WANG et al. Grain size effects on the electric and mechanical properties of submicro BaTiO3 ceramics. J. Euro. Ceram., 40, 391-400(2020).

    [37] N KUMAR, P TIRUPATHI, B KUMAR et al. Observation of dielectric relaxor behavior in Pb0.95Sr0.05( Zr0.5Ti0.5)O3 ceramics. Adv. Mater. Lett., 64, 284-289(2015).

    [38] SILVA JR P S DA, M VENET, O FLORÉNCIO. Influence of diffuse phase transition on the anelastic behavior of Nb-doped Pb(Zr0.53Ti0.47)O3 ceramics. J. Alloy. Comp., 647, 784-789(2015).

    [39] A MAZUERA, JR P SILVA, A RODRIGUES et al. Origin of discrepancy between electrical and mechanical anomalies in lead-free (K, Na)NbO3-based ceramics. Phys. Rev. B, 94, 184101(2016).

    [40] F CORDERO, F CRACIUN, P VERARDI. Dielectric and anelastic relaxation in PMN-PT relaxors. Ferroelectrics, 290, 141-149(2003).

    [41] Y YU, X S WANG, Y S LI et al. Fatigue behaviors in PZT ceramics induced by mechanical cyclic load. Ferroelectrics Lett., 41, 123-128(2014).

    [42] S XIE, J XU, Y CHEN et al. Flexural fracture mechanisms and fatigue behaviors of Bi4Ti3O12-based high-temperature piezoceramics sintered at different temperatures. Ceram. Int., 44, 16758-16765(2018).

    [43] S XIE, J XU, Y CHEN et al. Poling effect and sintering temperature dependence on fracture strength and fatigue properties of bismuth titanate based piezoceramics. Ceram. Int., 44, 20432-20440(2018).

    [44] R ASMATULU, R CLAUS, J MECHAM. Improving the damping properties of composites using ferroelectric inclusions. J. Intel. Mater. Syst. Str., 16, 463-468(2005).

    [45] M SUMITA, H GOHDA, S ASAI et al. New damping materials composed of piezoelectric and electro-conductive, particle-filled polymer composites: effect of the electromechanical coupling factor. Makromol. Chem., Rapid Commun., 12, 657-661(1991).

    [46] J YU, H KANEKO, S ASAI et al. Electrical and dynamic mechanical behavior of BaTiO3/VGCF/LDPE composite. Compos. Interface., 7, 411-424(2000).

    [47] S MARRA, K RAMESH, A DOUGLAS. The mechanical properties of lead-titanate/polymer 0-3 composites. Compos. Sci. Techno., 59, 2163-2173(1999).

    [48] C ZHANG, Z HU, G GAO et al. Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites. Mater. Design, 46, 503-510(2013).

    [49] X Q HONG, X S WANG, X M LI et al. Damping properties of epoxy-embedded piezoelectric composites. Key Engineering Materials, 512-515, 1342-1346(2012).

    [50] M X SHI, Z X HUANG, T WEI et al. Damping properties and mechanism of 0-3 PMN/CB/EP composites. Adv. Mater. Res., 66, 45-48(2009).

    Yun CHEN, Xusheng WANG, Yanxia LI, Xi YAO. Dynamic Mechanical Analysis in the Investigation on Ferroelectrics[J]. Journal of Inorganic Materials, 2020, 35(8): 857
    Download Citation