• Acta Optica Sinica
  • Vol. 37, Issue 7, 714002 (2017)
Cheng Lijun1、*, Yang Suhui1、2, Zhao Changming1, and Zhang Haiyang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0714002 Cite this Article Set citation alerts
    Cheng Lijun, Yang Suhui, Zhao Changming, Zhang Haiyang. Gain Competition Between Orthogonally Polarized Modes in Solid-State Lasers[J]. Acta Optica Sinica, 2017, 37(7): 714002 Copy Citation Text show less
    References

    [1] He T, Yang S H, Zhao C M, et al. High power amplification of tunable optically carried RF signals by a diode pumped Yb3+doped LMA silicon fiber[J]. Laser Physics Letters, 2015, 12(3): 035101.

    [2] Zheng Z, Zhao C M, Zhang H Y, et al. Phase noise reduction by using dual-frequency laser in coherent detection[J]. Optics & Laser Technology, 2016, 80: 169-175.

    [3] Kang Y, Cheng L J, Yang S H, et al. 50 W low noise dual-frequency laser fiber power amplifier[J]. Optics Express, 2016, 24(9): 9202-9208.

    [4] Brunel M, Bretenaker F, Floch A L. Tunable optical microwave source using spatially resolved laser eigenstates[J]. Optics Letters, 1997, 22(6): 384-386.

    [5] Loas G, Romanelli M, Alouini M. Dual-frequency 780 nm Ti:Sa laser for high spectral purity tunable CW THz generation[J]. IEEE Photonics Technology Letters, 2014, 26(15): 1518-1521.

    [6] Danion G, Hamel C, Frein L, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optics Express, 2014, 22(15): 17673-17678.

    [7] Rolland A, Frein L, Vallet M, et al. 40 GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1738-1740.

    [8] Brunel M, Emile O, Bretenaker F, et al. Tunable two-frequency lasers for lifetime measurements[J]. Optical Review, 1997, 4(5): 550-552.

    [9] Li Lei, Zhao Changming, Zhang Peng, et al. The study on diode-pumped two-frequency solid-state laser with tunable frequency difference[J]. Acta Physica Sinica, 2007, 56(5): 2663-2669.

    [10] Otsuka K, Mandel P, Bielawski S, et al. Alternate time scale in multimode lasers[J]. Physics Review A, 1992, 46(3): 1692-1695.

    [11] Sargent III M, Scully M O, Lamb W E. Laser physics[M]. 6th ed. Oxford: Westview Press, 1993: 96.

    [12] Brunel M, Amon A, Vallet M. Dual-polarization microchip laser at 1.53 μm[J]. Optics Letters, 2005, 30(18): 2418-2420.

    [13] Lacot E, Stoeckel F. Nonlinear mode coupling in a microchip laser[J]. Journal of the Optical Society of America B, 1996, 13(9): 2034-2040.

    [14] Tang C L, Statz H, Demars G. Spectral output and spiking behavior of solid-state lasers[J]. Journal of Applied Physics, 1963, 34(8): 2289-2295.

    [15] Wiesenfeld K, Bracikowski C, James G, et al. Observation of antiphase states in a multimode laser[J]. Physical Review Letters, 1990, 65(14): 1749-1752.

    [16] Park J D, Mkay A, Dawes J M. Effect of gain anisotropy on low-frequency dynamics in four-level solid-state lasers[J]. Optics Express, 2009, 17(8): 6053-6058.

    Cheng Lijun, Yang Suhui, Zhao Changming, Zhang Haiyang. Gain Competition Between Orthogonally Polarized Modes in Solid-State Lasers[J]. Acta Optica Sinica, 2017, 37(7): 714002
    Download Citation