• Journal of Semiconductors
  • Vol. 44, Issue 1, 010201 (2023)
Mengjia Li1, Lixiu Zhang3, Cong Chen1、4、*, Jiangzhao Chen2、**, and Liming Ding3、***
Author Affiliations
  • 1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
  • 2Key Laboratory of Optoelectronic Technology & Systems (MoE), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • 3Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • 4Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Macau 999078, China
  • show less
    DOI: 10.1088/1674-4926/44/1/010201 Cite this Article
    Mengjia Li, Lixiu Zhang, Cong Chen, Jiangzhao Chen, Liming Ding. The degradation of perovskite precursor[J]. Journal of Semiconductors, 2023, 44(1): 010201 Copy Citation Text show less
    References

    [1] J W Lee, S Tan, S I Seok et al. Rethinking the A cation in halide perovskites. Science, 375, eabj1186(2022).

    [2] S Wang, L Tan, J Zhou et al. Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells. Joule, 6, 1344(2022).

    [3] C Chen, S Zheng, H Song. Photon management to reduce energy loss in perovskite solar cells. Chem Soc Rev, 50, 7250(2021).

    [4] L Zhang, X Pan, L Liu et al. Star perovskite materials. J Semicond, 43, 030203(2022).

    [5] Y Zhang, Y Ma, Y Wang et al. Lead-free perovskite photodetectors: Progress, challenges, and opportunities. Adv Mater, 33, 2006691(2021).

    [6] C C Boyd, R Cheacharoen, T Leijtens et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 119, 3418(2018).

    [7] A Mei, Y Sheng, Y Ming et al. Stabilizing perovskite solar cells to IEC61215: 2016 standards with over 9, 000-h operational tracking. Joule, 4, 2646(2020).

    [8] Z Liu, P Liu, M Li et al. Efficient and stable FA-rich perovskite photovoltaics: From material properties to device optimization. Adv Energy Mater, 2200111(2022).

    [9] Y Huang, X Lei, T He et al. Recent progress on formamidinium-dominated perovskite photovoltaics. Adv Energy Mater, 12, 2100690(2022).

    [10] Y Wang, X Zhang, Z Shi et al. Stabilizing α-phase FAPbI3 solar cells. J Semicond, 43, 040202(2022).

    [11] E Driscoll, A Orera, P Anderson et al. Raman spectroscopy insights into the α-and δ-phases of formamidinium lead iodide (FAPbI3). Dalton Trans, 50, 3315(2021).

    [12] M Kim, G H Kim, T K Lee et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 3, 2179(2019).

    [13] X Wang, Y Fan, L Wang et al. Perovskite solution aging: What happened and how to inhibit?. Chem, 1369(2020).

    [14] Q Dong, W Shang, X Yu et al. Critical Role of organoamines in the irreversible degradation of a metal halide perovskite precursor colloid: Mechanism and inhibiting strategy. ACS Energy Lett, 7, 481(2021).

    [15] S Chen, X Xiao, H Gu et al. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci Adv, 7, eabe8130(2021).

    [16] Z Li, Z Xing, H Peng et al. Reactive inhibition strategy for triple-cation mixed-halide perovskite ink with prolonged shelf-life. Adv Energy Mater, 12, 2200650(2022).

    [17] C Chen, Y Rao, Z Li et al. Stabilizing formamidinium lead iodide perovskite precursor solution with phenylboric acid. Sol RRL, 5, 2000715(2021).

    [18] H Min, G Kim, M J Paik et al. Stabilization of precursor solution and perovskite layer by addition of sulfur. Adv Energy Mater, 9, 1803476(2019).

    [19] M Qin, J Cao, T Zhang et al. Fused-ring electron acceptor ITIC-Th: A novel stabilizer for halide perovskite precursor solution. Adv Energy Mater, 8, 1703399(2018).

    [20] L Wang, H Zhou, J Hu et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 363, 265(2019).

    [21] M Li, D Gao, B Zhang et al. Multifunctional reductive molecular modulator toward efficient and stable perovskite solar cells. Sol RRL, 5, 2100320(2021).

    [22] M Li, H Li, Q Zhuang et al. Stabilizing perovskite precursor by synergy of functional groups for NiOx-based inverted solar cells with 23.5% efficiency. Angew Chem Int Ed, 61, e202206914(2022).

    [23] C Zuo, L Ding. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 6, 9935(2014).

    [24] A Wang, J Wang, X Niu et al. Inhibiting octahedral tilting for stable CsPbI2Br solar cells. InfoMat, 4, e12263(2022).

    [25] L Ke, L Ding. Perovskite crystallization. J Semicond, 42, 080203(2021).

    [26] S Wang, X Zhang, W Zhu et al. Lewis base manipulated crystallization for efficient tin halide perovskite solar cells. Appl Surf Sci, 602, 154393(2022).

    [27] H Wang, L Zhang, M Cheng et al. Compositional engineering for lead halide perovskite solar cells. J Semicond, 43, 080202(2022).

    [28] S Jiang, S Xiong, W Dong et al. Constructing chromium multioxide hole-selective heterojunction for high-performance perovskite solar cells. Adv Sci, 2203681(2022).

    [29] J Zhou, M Li, S Wang et al. 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy, 95, 107036(2022).

    [30] H Xiao, C Zuo, F Liu et al. Drop-coating produces efficient CsPbI2Br solar cells. J Semicond, 42, 050502(2021).

    [31] L Zhang, C Zuo, L Ding. Efficient MAPbI3 solar cells made via drop-coating at room temperature. J Semicond, 42, 072201(2021).

    [32] B Yu, C Zuo, J Shi et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 42, 050203(2021).

    [33] Z Fang, L Zhang, S F Liu et al. Organic ammonium halides enhance the performance of Pb–Sn perovskite solar cells. J Semicond, 43, 120202(2022).

    [34] X Liu, Z Yu, T Wang et al. Full defects passivation enables 21% efficiency perovskite solar cells operating in air. Adv Energy Mater, 10, 2001958(2020).

    [35] Z Fang, Q Zeng, C Zuo et al. Perovskite-based tandem solar cells. Sci Bull, 66, 621(2021).

    [36] L Liu, Z Xiao, C Zuo et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 42, 020501(2021).

    [37] Y Cheng, L Ding. Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications. SusMat, 1, 324(2021).

    [38] D Zhao, L Ding. All-perovskite tandem structures shed light on thin-film photovoltaics. Sci Bull, 65, 1144(2020).

    [39] Y Xiao, C Zuo, J X Zhong et al. Large-area blade-coated solar cells: Advances and perspectives. Adv Energy Mater, 11, 2100378(2021).

    [40] C Zuo, D Vak, D Angmo et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 46, 185(2018).

    [41] T Lei, F Li, X Zhu et al. Flexible perovskite solar modules with functional layers fully vacuum deposited. Sol RRL, 4, 2000292(2020).

    [42] K Huang, Y Peng, Y Gao et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 9, 1901419(2019).

    [43] M Li, J Zhou, L Tan et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. The Innovation, 3, 100310(2022).

    [44] Y Cheng, Q D Yang, L Ding. Encapsulation for perovskite solar cells. Sci Bull, 66, 100(2021).

    Mengjia Li, Lixiu Zhang, Cong Chen, Jiangzhao Chen, Liming Ding. The degradation of perovskite precursor[J]. Journal of Semiconductors, 2023, 44(1): 010201
    Download Citation