• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 3, 400 (2021)
Jin-Ling ZHAO1、2、*, Lei HU2, Hao YAN2, Guo-Min CHU2, Yan FANG2, and Lin-Sheng HUANG1、2、**
Author Affiliations
  • 1National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601,China
  • 2School of Electronics and Information Engineering, Anhui University, Hefei 230601, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.03.017 Cite this Article
    Jin-Ling ZHAO, Lei HU, Hao YAN, Guo-Min CHU, Yan FANG, Lin-Sheng HUANG. Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 400 Copy Citation Text show less
    (a) LBPs=4,r=1,(b) LBPs=8,r=1,(c) schematic diagram of LBP
    Fig. 1. (a) LBPs=4,r=1,(b) LBPs=8,r=1,(c) schematic diagram of LBP
    Flowchart of hyperspectral image classification based on the LBP-SSKNN
    Fig. 2. Flowchart of hyperspectral image classification based on the LBP-SSKNN
    (a)False-color composite image(b)ground-truth classes for the Pavia University scene
    Fig. 3. (a)False-color composite image(b)ground-truth classes for the Pavia University scene
    (a)False-color composite image(b) ground truth classes for the Indian Pines scene
    Fig. 4. (a)False-color composite image(b) ground truth classes for the Indian Pines scene
    False-color composite image(a) and ground truth classes,(b) for the Salinas scene
    Fig. 5. False-color composite image(a) and ground truth classes,(b) for the Salinas scene
    Influence on classification accuracies for the number of principal components
    Fig. 6. Influence on classification accuracies for the number of principal components
    Influence on classification accuracies of the Indian Pines dataset for r and s
    Fig. 7. Influence on classification accuracies of the Indian Pines dataset for r and s
    Influence on classification accuracies of the Indian Pines dataset for k
    Fig. 8. Influence on classification accuracies of the Indian Pines dataset for k
    Classification maps using the four methods for the Pavia University dataset
    Fig. 9. Classification maps using the four methods for the Pavia University dataset
    Classification maps using the four methods for the Indian Pines dataset
    Fig. 10. Classification maps using the four methods for the Indian Pines dataset
    Classification maps using the four methods for the Salinas dataset
    Fig. 11. Classification maps using the four methods for the Salinas dataset
    Classification accuracies under different training samples for the Pavia University dataset
    Fig. 12. Classification accuracies under different training samples for the Pavia University dataset
    Classification accuracies under different training samples for the Indian Pines dataset
    Fig. 13. Classification accuracies under different training samples for the Indian Pines dataset
    Classification accuracies under different training samples for the Salinas dataset
    Fig. 14. Classification accuracies under different training samples for the Salinas dataset
    序号地物类别样本量

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Asphalt

    Meadows

    Gravel

    Trees

    Painted metal sheets

    Bare Soil

    Bitumen

    Self-Blocking Bricks

    Shadows

    6 631

    18 649

    2 099

    3 064

    1 345

    5 029

    1 330

    3 682

    947

    Table 1. Sample information of the Pavia University dataset
    序号地物类别样本量

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    Alfalfa

    Corn-notill

    Corn-mintill

    Corn

    Grass-pasture

    Grass-trees

    Grass-pasture-mowed

    Hay-windrowed

    Oats

    Soybean-notill

    Soybean-mintill

    Soybean-clean

    Wheat

    Woods

    Buildings-Grass-Trees-Drives

    Stone-Steel-Towers

    46

    1 428

    830

    237

    483

    730

    28

    478

    20

    972

    2 455

    593

    205

    1 265

    386

    93

    Table 2. Sample information for the Indian Pines dataset
    序号地物类别样本量

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    Brocoli_green_weeds_1

    Brocoli_green_weeds_2

    Fallow

    Fallow_rough_plow

    Fallow_smooth

    Stubble

    Celery

    Grapes_untrained

    Soil_vinyard_develop

    Corn_senesced_green_weeds

    Lettuce_romaine_4wk

    Lettuce_romaine_5wk

    Lettuce_romaine_6wk

    Lettuce_romaine_7wk

    Vinyard_untrained

    Vinyard_vertical_trellis

    2 009

    3 426

    1 976

    1 394

    2 678

    3 959

    3 579

    11 271

    6 203

    3 278

    1 068

    1 927

    916

    1 070

    7 268

    1 807

    Table 3. Sample information for the Salinas dataset
    主成分个数Pavia UniversityIndian PinesSalinas
    贡献率/%累计贡献率/%贡献率/%累计贡献率/%贡献率/%累计贡献率/%

    1

    2

    3

    4

    5

    6

    7

    8

    58.32

    36.10

    4.43

    0.30

    0.21

    0.18

    0.12

    0.07

    58.32

    94.42

    98.86

    99.16

    99.37

    99.54

    99.67

    99.74

    68.49

    23.53

    1.49

    0.82

    0.69

    0.52

    0.40

    0.36

    68.49

    92.02

    93.52

    94.34

    95.03

    95.55

    95.95

    96.31

    74.47

    23.53

    1.13

    0.54

    0.17

    0.06

    0.02

    0.01

    74.47

    98.00

    99.14

    99.68

    99.85

    99.91

    99.93

    99.95

    Table 4. Comparison of principal component contribution for the three datasets
    分类精度(%)w=3w=5w=7w=9w=11w=13w=15
    OA97.00 ± 0.2697.62 ± 0.3697.72 ± 0.3597.88 ± 0.2697.52 ± 0.2997.85 ± 0.2897.71 ± 0.43
    AA95.06 ± 1.1195.78 ± 1.6295.59 ± 1.1995.59 ± 1.0396.03 ± 1.4495.90 ± 1.4195.80 ± 0.89
    Kappa96.58 ± 0.3097.29 ± 0.4197.40 ± 0.3997.58 ± 0.2997.17 ± 0.3097.55 ± 0.3797.39 ± 0.49
    Table 5. Influence on classification accuracies of the Indian Pines dataset for w
    序号地物种类训练样本数测试样本数KNNRBF-SVMKSOMPLBP-SSKNN
    1Asphalt6635 96880.22±0.7091.42±0.4087.67±0.5699.90±0.11
    2Meadows1 86516 78499.18±0.0996.54±0.5199.99±0.0099.97±0.03
    3Gravel2101 88964.28±2.3771.52±2.3989.63±3.1299.55±0.33
    4Trees3062 75879.06±0.7792.88±0.5094.04±1.1392.67±1.49
    5Painted metal sheets1351 21199.21±0.2799.52±0.26100.00±0.0099.33±0.33
    6Bare Soil5034 52640.62±1.3375.57±1.6885.62±2.40100.00±0.00
    7Bitumen1331 19779.39±1.5180.07±1.5589.49±1.0999.89±0.15
    8Self-Blocking Bricks3683 31483.84±2.0186.06±1.2494.78±0.7799.48±0.62
    9Shadows9585292.96±0.8697.52±1.3173.95±0.4490.63±1.29
    OA84.13±0.3290.49±0.1994.11±0.3899.15±0.15
    AA79.86±0.4087.90±0.4590.57±0.4197.94±0.27
    Kappa78.24±0.4687.30±0.2692.08±0.5298.87±0.20
    Table 6. Classification accuracies using the four methods based on the Pavia University dataset
    序号地物种类训练样本数测试样本数KNNRBF-SVMKSOMPLBP-SSKNN
    1Alfalfa54124.88±10.2217.32±14.6986.77±7.1193.41±4.32
    2Corn-notill1431 28559.64±4.2375.61±2.1688.44±1.7297.95±0.41
    3Corn-mintill8374745.02±2.6869.97±2.5690.80±3.0896.28±1.51
    4Corn2421324.88±8.0646.95±6.1791.74±4.1995.45±2.17
    5Grass-pasture4843580.74±1.9190.69±2.2993.70±0.1097.52±0.77
    6Grass-trees7365797.35±1.5795.25±1.4499.06±0.3997.84±1.58
    7Grass-pasture-mowed32566.40±9.1221.20±15.0247.29±9.0194.00±4.73
    8Hay-windrowed4843097.28±2.1599.14±0.5799.95±0.0999.60±0.56
    9Oats21816.60±5.006.11±0.380.00±0.0078.33±1.78
    10Soybean-notill9797568.61±3.0669.51±3.0589.65±3.1696.88±1.48
    11Soybean-mintill2462 20973.13±1.9486.52±1.0396.54±0.7898.90±0.49
    12Soybean-clean5953427.08±4.6871.89±4.9293.61±2.3996.72±1.51
    13Wheat2118491.74±2.0296.79±1.5199.51±0.4595.82±2.98
    14Woods1271 13893.50±0.7296.78±1.3699.32±0.5799.09±0.37
    15Buildings-Grass-Trees-Drives3934715.53±1.8652.62±4.4487.92±7.5898.96±0.61
    16Stone-Steel-Towers98483.93±2.0888.81±4.0397.63±1.3092.74±4.90
    OA68.42±0.6081.27±0.5693.94±0.4697.88±0.26
    AA59.46±1.2067.82±0.9285.19±0.6095.60±1.03
    Kappa63.71±0.7178.48±0.6693.08±0.5397.58±0.29
    Table 7. Classification accuracies using the four methods for the Indian Pines dataset
    序号地物种类训练样本数测试样本数KNNRBF-SVMKSOMPLBP-SSKNN
    1Brocoli_green_weeds_1401 96997.17±0.4898.60±1.1599.91±0.1299.81±0.32
    2Brocoli_green_weeds_2693 35798.22±0.3399.01±0.3899.97±0.0699.96±0.05
    3Fallow401 93693.39±2.0893.63±3.5296.99±1.7699.91±0.12
    4Fallow_rough_plow281 36698.87±0.1198.59±0.8399.45±0.3493.11±2.17
    5Fallow_smooth542 62494.55±1.3297.74±1.0598.29±1.2794.65±1.47
    6Stubble793 88099.52±0.0999.44±0.23100.00±0.0097.32±0.95
    7Celery723 50799.21±0.0899.35±0.2599.05±0.4298.56±0.75
    8Grapes_untrained22511 04682.36±2.1487.44±1.1795.08±1.1599.79±0.17
    9Soil_vinyard_develop1246 07997.27±0.1998.64±0.6399.97±0.3299.99±0.03
    10Corn_senesced_green_weeds663 21284.14±2.2792.68±1.7696.77±0.8398.69±0.52
    11Lettuce_romaine_4wk211 04792.00±2.0094.16±4.4494.29±6.7995.57±4.24
    12Lettuce_romaine_5wk391 88899.99±0.0299.55±0.4999.99±0.0296.72±1.18
    13Lettuce_romaine_6wk1889897.76±0.2897.08±2.0898.87±0.6192.49±2.90
    14Lettuce_romaine_7wk211 04988.52±2.5892.83±2.4499.42±0.2991.04±4.60
    15Vinyard_untrained1457 12353.64±2.8067.78±2.7084.44±3.4098.81±0.43
    16Vinyard_vertical_trellis361 77184.11±3.1296.35±1.6299.09±0.5299.99±0.02
    OA87.02±0.2691.43±0.3996.23±0.4098.46±0.15
    AA91.30±0.4094.56±0.4097.60±0.3897.28±0.21
    Kappa85.51±0.2990.44±0.4495.81±0.4598.29±0.17
    Table 8. Classification accuracies using the four methods for the Salinas dataset
    Jin-Ling ZHAO, Lei HU, Hao YAN, Guo-Min CHU, Yan FANG, Lin-Sheng HUANG. Hyperspectral image classification combing local binary patterns and k-nearest neighbors algorithm[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 400
    Download Citation