[3] Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.
[4] Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure[J]. IEEE Trans on System, Man an-d Cybernetics-Parts B: Cybernetics, 2004, 34(4): 1907-1916.
[5] Cai W L, Chen S C, Zhang D Q. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007, 40(3): 825-838.
[6] Krinidis S, Chatzis V. A robust fuzzy local information c-means clustering algorithm[J]. IEEE Trans on Image Processing, 2010, 19(5): 1328-1337.
[7] Gong M, Liang Y, Shi J, et al. Fuzzy c-means clustering with local information and kernel metric for image segmentation[J]. IEEE Trans on Image Processing a Publication of the IEEE Signal Processing Society, 2013, 22(2): 573-584.
[8] Villeirs G M, Meerleer G, Verstraete K, et al. Magnetic resonance assessment of prostate localization variability in intensity-modulated radiotherapy for prostate cancer[J]. International Journal of Radiation Oncology Biology Physics, 2004, 60(5): 1611-1621.
[10] Jain A, Zongker D. Feature selection: evaluation, application and small sample performance[J]. IEEE Trans on Pattern Analysis andMachine Intelligence, 1997, 19(2): 153-158.
[11] Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and minredundancy [J]. IEEE Trans on Pattern Analysis and MachineIntelligence, 2005, 27(8): 1226-1238.
[12] Law M H, Figueiredo M A T, Jain A K. Simultaneous feature selection and clustering using mixture models [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1154-1166.
[13] Constantinopoulos C, Titsias M K, Likas A. Bayesian feature and model selection for Gaussian mixture models[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(6): 1013-1018
[14] Nguyen T M, Wu Q M J. Online feature selection based on fuzzy clustering and its applications[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(6): 1294-1306.
[16] Gharieb R R, Gendy G, Abdelfattah A. C-means clustering fuzzified by two membership relative entropy functions approach incorporating local data information for noisy image segmentation[J]. Signal Image&Video Processing, 2017, 11(3): 541-548.