• Advanced Photonics Nexus
  • Vol. 3, Issue 2, 026012 (2024)
Zhitao Zhang1, Hanghang Yu1, Sheng Chen1, Zheng Li1, Xiaobo Heng1, and Hongwen Xuan1、2、*
Author Affiliations
  • 1Chinese Academy of Sciences, GBA branch of Aerospace Information Research Institute, Guangzhou, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • show less
    DOI: 10.1117/1.APN.3.2.026012 Cite this Article Set citation alerts
    Zhitao Zhang, Hanghang Yu, Sheng Chen, Zheng Li, Xiaobo Heng, Hongwen Xuan. High-power, narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals[J]. Advanced Photonics Nexus, 2024, 3(2): 026012 Copy Citation Text show less
    References

    [1] M. Totzeck et al. Pushing deep ultraviolet lithography to its limits. Nat. Photonics, 1, 629-631(2007).

    [2] B. M. Barnes et al. Three-dimensional deep sub-wavelength defect detection using λ=193  nm optical microscopy. Opt. Express, 21, 26219-26226(2013). https://doi.org/10.1364/OE.21.026219

    [3] A. D. Shutov et al. Highly efficient tunable picosecond deep ultraviolet laser system for Raman spectroscopy. Opt. Lett., 44, 5760-5763(2013).

    [4] S. Tanaka et al. Development of high coherence high power 193 nm laser. Proc. SPIE, 9726, 972624(2016).

    [5] B. Päivänranta et al. Sub-10 nm patterning using EUV interference lithography. Nanotechnology, 22, 375302(2011).

    [6] M. Kobayashi et al. DUV high power lasers processing for glass and CFRP. Proc. SPIE, 10238, 102381D(2017).

    [7] H. Xuan et al. Development of narrow-linewidth Yb- and Er-fiber lasers and frequency mixing for ArF excimer laser seeding. Proc. SPIE, 8961, 89612M(2014).

    [8] J. Zhang et al. Distributed Kerr lens mode-locked Yb:YAG thin-disk oscillator. Ultrafast Sci., 2022, 9837892(2022).

    [9] H. Xuan et al. High-power and high-conversion efficiency deep ultraviolet (DUV) laser at 258 nm generation in the CsLiB6O10 (CLBO) crystal with a beam quality of M2<1.5. Opt. Lett., 42, 3133-3136(2017). https://doi.org/10.1364/OL.42.003133

    [10] J. Sakuma et al. Continuous-wave 193.4 nm laser with 120 mW output power. Opt. Lett., 40, 5590-5593(2015).

    [11] M. Müller et al. High-average-power femtosecond laser at 258 nm. Opt. Lett., 42, 2826-2829(2017).

    [12] A. M. Rodin et al. Comparison of Yb:YAG single crystal fiber with larger aperture CPA pumped at 940 nm and 969 nm, s1905(2017).

    [13] M. Scholz et al. A bright continuous-wave laser source at 193 nm. Appl. Phys. Lett., 103, 051114(2013).

    [14] H. Kawai et al. UV light source using fiber amplifier and nonlinear wavelength conversion, CTuT4(2003).

    [15] M. Tsuboi et al. Development of high-power, 6 kHz, single-mode Ti: sapphire laser at 904 nm for generating 193 nm light. Jpn. J. Appl. Phys., 54, 042702(2015).

    [16] H. Xuan et al. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers. Opt. Express, 23, 10564-10572(2015).

    [17] H. Xuan et al. 1 W solid-state 193 nm coherent light by sum-frequency generation. Opt. Express, 25, 29172-29179(2017).

    [18] Z. Zhao et al. Watt-level 193 nm source generation based on compact collinear cascaded sum frequency mixing configuration. Opt. Express, 26, 19435-19444(2018).

    [19] D. G. Nikitin et al. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal. Opt. Lett., 41, 1660-1663(2016).

    [20] Q. Fu et al. High-power, high-efficiency, all-fiberized-laser-pumped, 260-nm, deep-UV laser for bacterial deactivation. Opt. Express, 29, 42485-42494(2021).

    [21] A. J. Merriam et al. Efficient nonlinear frequency conversion to 193-nm using cooled BBO, MB11(2007).

    [22] K. Kohno et al. High-power DUV picosecond pulse laser with a gain-switched-LD-seeded MOPA and large CLBO crystal. Opt. Lett., 45, 2351-2354(2020).

    [23] T. Kawamura et al. Effect of water impurity in CsLiB6O10 crystals on bulk laser-induced damage threshold and transmittance in the ultraviolet region. Appl. Opt., 48, 1658-1662(2009). https://doi.org/10.1364/AO.48.001658

    [24] X. Yuan et al. Growth and characterization of large CLBO crystals. J. Cryst. Growth, 293, 97-101(2006).

    [25] R. D. Mead, C. E. Hamilton, D. D. Lowenthal. Solid state lasers for 193-nm photolithography. Proc. SPIE, 3051, 882-889(1997).

    [26] C. E. Hamilton et al. All solid-state, single-frequency 193-nm laser system for deep-UV metrology, 322-323(1998).

    [27] T. Ohtsuki et al. 193-nm generation by eighth harmonics of Er3+-doped fiber amplifier, PD9(2000). https://doi.org/10.1109/CLEO.2000.906788

    [28] A. Borsutzky, R. Brünger, R. Wallenstein. Tunable UV radiation at short wavelengths (188–240 nm) generated by sum-frequency mixing in lithium borate. Appl. Phys. B, 52, 380-384(1991).

    [29] Z. Zhang et al. 10 kW peak power, single-frequency 1553 nm nanosecond pulsed fiber laser for time-of-flight LIDAR. Appl. Phys. Express, 16, 022002(2013).

    [30] Y. Zaouter et al. Direct amplification of ultrashort pulses in μ-pulling-down Yb: YAG single crystal fibers. Opt. Lett., 36, 748-750(2011). https://doi.org/10.1364/OL.36.000748

    [31] Y. Orii et al. Stable 10,000-hour operation of 20-W deep ultraviolet laser generation at 266 nm. Opt. Express, 30, 11797-11808(2022).

    [32] K. Takachiho et al. Ultraviolet laser-induced degradation of CsLiB6O10 and β-BaB2O4. Opt. Mater. Express, 4, 559-567(2014). https://doi.org/10.1364/OME.4.000559

    [33] Z. Hu. Development of large-size LBO crystal growth, 18a_D5_4(2013).

    Zhitao Zhang, Hanghang Yu, Sheng Chen, Zheng Li, Xiaobo Heng, Hongwen Xuan. High-power, narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals[J]. Advanced Photonics Nexus, 2024, 3(2): 026012
    Download Citation