• Photonics Research
  • Vol. 3, Issue 6, 339 (2015)
Minglei Guo1、2, Yong-Hong Ye1、*, Jinglei Hou1, and Bintao Du1
Author Affiliations
  • 1Department of Physics, Nanjing Normal University, Nanjing 210097, China
  • 2Department of Optoelectronic Engineering, Anhui Science and Technology University, Chuzhou 233100, China
  • show less
    DOI: 10.1364/PRJ.3.000339 Cite this Article Set citation alerts
    Minglei Guo, Yong-Hong Ye, Jinglei Hou, Bintao Du. Experimental far-field imaging properties of high refractive index microsphere lens[J]. Photonics Research, 2015, 3(6): 339 Copy Citation Text show less
    References

    [1] S. Yang, A. Taflove, V. Backman. Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet. Opt. Express, 19, 7084-7093(2011).

    [2] P. Ferrand, J. Wenger, A. Devilez. Direct imaging of photonic nanojets. Opt. Express, 16, 6930-6940(2008).

    [3] Z. Chen, A. Taflove, V. Backman. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express, 12, 1214-1220(2004).

    [4] X. Lopez-Yglesias, J. M. Gamba, R. C. Flagan. The physics of extreme sensitivity in whispering gallery mode optical biosensors. J. Appl. Phys., 111, 084701(2012).

    [5] S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo. Overcoming the diffraction limit induced by microsphere optical nanoscopy. J. Opt., 15, 125710(2013).

    [6] S. Lee, L. Li, Z. Wang. Optical resonances in microsphere photonic nanojets. J. Opt., 16, 15704-15711(2014).

    [7] A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, A. Cárabe. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett., 40, 5-8(2015).

    [8] E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, A. P. Mosk. Scattering lens resolves sub-100  nm structures with visible light. Phys. Rev. Lett., 106, 193905(2011).

    [9] V. M. Sundaram, S. B. Wen. Analysis of deep sub-micron resolution in microsphere based imaging. Appl. Phys. Lett., 105, 204102(2014).

    [10] K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. N. Astratov. Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices. IEEE Proceedings of National Aerospace and Electronics Conference (NAECON), 50-52(2014).

    [11] L. Lin, W. Guo, Y. Yan, S. Lee, T. Wang. Labe-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl., 2, e104(2013).

    [12] H. Yang, N. Moullan, J. Auwerx, M. A. Gijs. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10, 1712-1718(2014).

    [13] J. Schwartz, S. Stavrakis, S. R. Quake. Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability. Nat. Nanotechnol., 5, 127-132(2010).

    [14] J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 460, 498-501(2009).

    [15] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong. Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).

    [16] X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li. Microsphere based microscope with optical super-resolution capability. Appl. Phys. Lett., 99, 203102(2011).

    [17] A. Darafsheh, G. F. Walsh, L. D. Negro, V. N. Astratov. Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett., 101, 141128(2012).

    [18] R. Ye, Y. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, J. Zhang. Experimental far-field imaging properties of a ∼ 5  μm diameter spherical lens. Opt. Lett., 38, 1829-1831(2013).

    [19] R. Ye, Y. Ye, H. F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, J. Zhang. Experimental imaging properties of immersion microscale spherical lenses. Sci. Rep., 4, 1-5(2014).

    [20] D. J. Goldstein. A quantitative computer simulation of microscopic imaging. J. Microsc., 162, 241-253(1991).

    [21] D. A. Fletcher, K. E. Goodson, G. S. Kino. Focusing in microlenses close to a wavelength in diameter. Opt. Lett., 26, 399-401(2001).

    [22] D. R. Mason, M. V. Jouravlev, K. S. Kim. Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Opt. Lett., 35, 2007-2009(2010).

    [23] M. Tsang, D. Psaltis. Theory of resonantly enhanced near-field imaging. Opt. Express, 15, 11959-11970(2007).

    [24] M. Tsang, D. Psaltis. Reflectionless evanescent-wave amplification by two dielectric planar waveguides. Opt. Lett., 31, 2741-2743(2006).

    [25] Y. Duan, G. Barbastathis, B. Zhang. Classical imaging theory of a microlens with super-resolution. Opt. Lett., 38, 2988-2990(2013).

    [26] T. X. Hoang, Y. Duan, X. Chen, G. Barbastathis. Focusing and imaging in microsphere-based microscopy. Opt. Express, 23, 12337-12353(2015).

    Minglei Guo, Yong-Hong Ye, Jinglei Hou, Bintao Du. Experimental far-field imaging properties of high refractive index microsphere lens[J]. Photonics Research, 2015, 3(6): 339
    Download Citation