• Acta Optica Sinica
  • Vol. 35, Issue 11, 1117003 (2015)
Tan Hai1、2、*, Wang Dadong3, Xue Yanling1, Wang Yudan1, Yang Yiming1、2, and Xiao Tiqiao1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201535.1117003 Cite this Article Set citation alerts
    Tan Hai, Wang Dadong, Xue Yanling, Wang Yudan, Yang Yiming, Xiao Tiqiao. Parallelization of 3D Thinning Algorithm for Extracting Skeleton of Micro-CT Vasculature[J]. Acta Optica Sinica, 2015, 35(11): 1117003 Copy Citation Text show less
    References

    [1] Peng Guanyun, Wang Yurong, Ren Haiqing, et al.. Investigation of characteristic microstructures of adhesive interface in wood/bamboo composite material by synchrotron radiation X-ray phase contrast microscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 829-833.

    [2] Ye Linlin, Xue Yanling, Tan Hai, et al.. X-ray phase contrast micro-tomography and its application in quantitative 3D imaging study of wild ginseng characteristic microstructures[J]. Acta Optica Sinica, 2013, 33(12): 1234002.

    [3] R Chen, P Liu, T Xiao, et al.. X-ray imaging for non-destructive microstructure analysis at SSRF[J]. Advanced Materials, 2014, 26(46): 7688-7691.

    [4] Xiao Tiqiao, Xie Honglan, Deng Biao, et al.. Progresses of X-ray imaging methodology and its applications at Shanghai Synchrotron Radiation Facility[J]. Acta Optica Sinica, 2014, 34(1): 0100001.

    [5] P Liu, J Sun, J Zhao, et al.. Microvascular imaging using synchrotron radiation[J]. Journal of Synchrotron Radiation, 2010, 17(4): 517-521.

    [6] M Shirai, D O Schwenke, H Tsuchimochi, et al.. Synchrotron radiation imaging for advancing our understanding of cardiovascular function [J]. Circulation Research, 2013, 112(1): 209-221.

    [7] B Deng, Y Ren, Y Wang, et al.. Full field X-ray nano-imaging at SSRF[C]. SPIE, 2013, 8851: 88511D.

    [8] B Dong, F Xu, X Hu, et al.. In situ investigation of the 3D mechanical microstructure at nanoscale: Nano-CT imaging method of local small region in large scale sample[J]. Scientific World Journal, 2014, 2014: 806371.

    [9] H Xie, B Deng, G Du, et al.. X-ray biomedical imaging beamline at SSRF[J]. Journal of Instrumentation, 2013, 8(8): C08003.

    [10] Qi Juncheng, Ren Yuqi, Du Guohao, et al.. Multiple contrast micro-computed tomography system based on X-ray grating imaging[J]. Acta Optica Sinica, 2013, 33(10): 1034001.

    [11] N D Cornea, D Silver, P Min. Curve-skeleton properties, applications, and algorithms[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(3): 530-548.

    [12] T C Lee, R L Kashyap, C N Chu. Building skeleton models via 3-D medial surface axis thinning algorithms[J]. CVGIP: Graphical Models and Image Processing, 1994, 56(6): 462-478 .

    [13] G Borgefors. On digital distance transforms in three dimensions[J]. Computer Vision and Image Understanding, 1996, 64(3): 368-376.

    [14] J W Brandt, V R Algazi. Continuous skeleton computation by Voronoi diagram[J]. CVGIP: Image Understanding, 1992, 55(3): 329-338.

    [15] N D Cornea, D Silver, X Yuan, et al.. Computing hierarchical curve-skeletons of 3D objects[J]. Visual Computer, 2005, 21(11): 945-955.

    [16] T Saito. A sequential thinning algorithm for three dimensional digital pictures using the Euclidean distance transformation[C]. Proceedings of the 9th SCIA, 1995: 507-516.

    [17] K Palágyi, E Balogh, A Kuba, et al.. A sequential 3D thinning algorithm and its medical applications[M].// Information Processing in Medical Imaging. Berlin: Springer Berlin Heidelberg, 2001, 2082: 409-415.

    [18] C M Ma , M Sonka. A fully parallel 3D thinning algorithm and its applications[J]. Computer Vision and Image Understanding, 1996, 64(3): 420-433.

    [19] K Palagyi, A Kuba. A parallel 3D 12-subiteration thinning algorithm[J]. Graphical Models and Image Processing, 1999, 61(4): 199-221.

    [20] W Xie, R P Thompson, R Perucchio. A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton[J]. Pattern Recognition, 2003, 36(7): 1529-1544.

    [21] T Wang, A Basu. A note on‘a fully parallel 3D thinning algorithm and its applications’[J]. Pattern Recognition Letters, 2007, 28(4): 501-506 .

    [22] T Y Kong, A Rosenfeld. Digital-topology - introduction and survey[J]. Computer Vision Graphics and Image Processing, 1989 , 48(3): 357-393.

    [23] K Palágyi, G Németh, P Kardos. Topology preserving parallel 3D thinning algorithms[M].// Digital Geometry Algorithms. Berlin: Springer, 2012: 165-188.

    [24] J L Hennessy, D A Patterson. Computer Architecture: A Quantitative Approach[M]. Waltham: Elsevier, 2011.

    CLP Journals

    [1] Zhao Fangzhen, Liang Haiying, Wu Xianglin, Ding Dehong. Active Contour Segmentation Model Based on Local and Global Gaussian Fitting[J]. Laser & Optoelectronics Progress, 2017, 54(5): 51006

    [2] Li Yang, Xia Xinlin, Chen Xue, Liu Bo, Tan Heping. Simulation Study on Accelerated Pore-Scale Radiative Transfer of Ni Foam[J]. Acta Optica Sinica, 2016, 36(11): 1124001

    [3] Zhang Yanhong, Sheng Liang, Li Kuinian, Li Yang, Peng Bodong, Zhang Mei, Zhao Jizhen, Yuan Yuan. Smooth Constrained OSEM Iteration Reconstruction Algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(2): 21006

    [4] Xie Zhinan, Zheng Dong, Chen Jiayao, Hong Guobin. A Tumor Segmentation Method of Improved Chan-Vese Model for Liver Cancer Ablation Computed Tomography Image[J]. Laser & Optoelectronics Progress, 2017, 54(2): 21702

    [5] Li Yang, Xia Xinlin, Sun Chuang, Fan Chao, Tan Heping. Experimental and Numerical Study on Pore-Scale Spectral Radiative Properties of Ni Foam[J]. Acta Optica Sinica, 2017, 37(4): 424002

    Tan Hai, Wang Dadong, Xue Yanling, Wang Yudan, Yang Yiming, Xiao Tiqiao. Parallelization of 3D Thinning Algorithm for Extracting Skeleton of Micro-CT Vasculature[J]. Acta Optica Sinica, 2015, 35(11): 1117003
    Download Citation