[1] Li L, Ge H Y, Jiang Y Y et al. Research progress of terahertz wave in 6G communication network[J]. Laser & Optoelectronics Progress, 59, 1300007(2022).
[2] Imoize A L, Adedeji O, Tandiya N et al. 6G enabled smart infrastructure for sustainable society: opportunities, challenges, and research roadmap[J]. Sensors, 21, 1709(2021).
[3] Boulogeorgos A A A, Jornet J M, Alexiou A. Directional terahertz communication systems for 6G: fact check[J]. IEEE Vehicular Technology Magazine, 16, 68-77(2021).
[4] Polese M, Jornet J M, Melodia T et al. Toward end-to-end, full-stack 6G terahertz networks[J]. IEEE Communications Magazine, 58, 48-54(2020).
[5] Yang F Y, Pitchappa P, Wang N. Terahertz reconfigurable intelligent surfaces (RISs) for 6G communication links[J]. Micromachines, 13, 285(2022).
[6] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[7] Ni X J, Ishii S, Kildishev A V et al. Ultra-thin, planar, babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2, e72(2013).
[8] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).
[9] Park J S, Zhang S Y, She A L et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography[J]. Nano Letters, 19, 8673-8682(2019).
[10] Wu X, Lu H X, Sengupta K. Programmable terahertz chip-scale sensing interface with direct digital reconfiguration at sub-wavelength scales[J]. Nature Communications, 10, 1-13(2019).
[11] Tao J, You Q, Li Z L et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications[J]. Advanced Materials, 34, 2106080(2022).
[12] Zheng Y L, Chen K, Xu Z Y et al. Metasurface-assisted wireless communication with physical- level information encryption[J]. Advanced Science, 9, e2204558(2022).
[13] Huang L L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications[J]. Nanophotonics, 7, 1169-1190(2018).
[14] Zhao R Z, Huang L L, Wang Y T. Recent advances in multi-dimensional metasurface holographic technologies[J]. PhotoniX, 1, 1-24(2020).
[15] Arbabi A, Arbabi E, Kamali S M et al. A miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 7, 1-9(2016).
[16] Song Q H, Baroni A, Sawant R et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nature Communications, 11, 1-8(2020).
[17] Chen J, Ye X, Gao S L et al. Planar wide-angle-imaging camera enabled by a metalens array[J]. Optica, 9, 431-437(2022).
[18] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).
[19] Daniel R, Deta L, Davide J et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 349, 165-168(2015).
[20] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1-6(2012).