• Chinese Journal of Lasers
  • Vol. 50, Issue 6, 0613001 (2023)
Yuting Chen1, Wenrui Xue1、*, Jing Zhang1, Haotian Fan1, and Changyong Li2、3
Author Affiliations
  • 1College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, Shanxi , China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, Shanxi , China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    DOI: 10.3788/CJL220767 Cite this Article Set citation alerts
    Yuting Chen, Wenrui Xue, Jing Zhang, Haotian Fan, Changyong Li. Infrared Ultra-Wide-Band Absorber Based on VO2, NaF, and TiO2[J]. Chinese Journal of Lasers, 2023, 50(6): 0613001 Copy Citation Text show less
    References

    [1] Kim Y J, Hwang J S, Yoo Y J et al. Ultrathin microwave metamaterial absorber utilizing embedded resistors[J]. Journal of Physics D: Applied Physics, 50, 405110(2017).

    [2] Qi Y P, Liu C Q, Hu B B et al. Tunable plasmonic absorber in THz-band range based on graphene arrow-shaped metamaterial[J]. Results in Physics, 23, 652-695(2021).

    [3] Lei L, Li S, Huang H X et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial[J]. Optics Express, 26, 5686-5693(2018).

    [4] Liang Q Q, Wang T S, Lu Z W et al. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting[J]. Advanced Optical Materials, 1, 43-49(2013).

    [5] Huo D W, Zhang J W, Wang H et al. Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array[J]. Nanoscale Research Letters, 12, 465(2017).

    [6] Sun D W, Li C H, Yi L J et al. High absorption broadband solar energy absorber based on two-dimensional photonic crystal[J]. Acta Optica Sinica, 41, 0516002(2021).

    [7] Qin Z, Shi X Y, Yang F M et al. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring[J]. Optics Express, 30, 473-483(2022).

    [8] Hoa N T Q, Lam P H, Tung P D et al. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region[J]. IEEE Photonics Journal, 11, 4600208(2019).

    [9] Zhang B X, Zhao Y H, Hao Q Z et al. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array[J]. Optics Express, 19, 15221-15228(2011).

    [10] Huang Y J, Liu L, Pu M B et al. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum[J]. Nanoscale, 10, 8298-8303(2018).

    [11] Chen M J, He Y R. Plasmonic nanostructures for broadband solar absorption based on the intrinsic absorption of metals[J]. Solar Energy Materials and Solar Cells, 188, 156-163(2018).

    [12] Jung S, Kim Y J, Yoo Y J et al. High-order resonance in a multiband metamaterial absorber[J]. Journal of Electronic Materials, 49, 1677-1688(2020).

    [13] Yuan L M, Liao J M, Ren A B et al. Ultra-narrow-band infrared absorbers based on surface plasmon resonance[J]. Plasmonics, 16, 1165-1174(2021).

    [14] Wang H Q, Yang J B, Wu W J et al. Dual-band perfect absorbers based on the magnetic resonance and the cavity resonance[J]. Proceedings of SPIE, 10256, 1025633(2017).

    [15] Qin Z, Meng D J, Yang F M et al. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators[J]. Optics Express, 29, 20275-20285(2021).

    [16] Qi Y P, Zhang Y, Liu C Q et al. A tunable terahertz metamaterial absorber composed of elliptical ring graphene arrays with refractive index sensing application[J]. Results in Physics, 16, 103012(2020).

    [17] Wang X X, Zhu J K, Xu Y Q et al. A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure[J]. Chinese Physics B, 30, 024207(2021).

    [18] Zhou Z G, Sakr E, Sun Y B et al. Solar thermophotovoltaics: reshaping the solar spectrum[J]. Nanophotonics, 5, 1-21(2016).

    [19] Kim J, Han K, Hahn J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports, 7, 6740(2017).

    [20] Lei J G, Ji B Y, Lin J Q. A high-performance light absorber based on a metamaterial nanopyramid array[J]. Chinese Journal of Physics, 54, 940-946(2016).

    [21] Huang Y Q, Li Y, Li Z P et al. Tunable mid-infrared broadband absorber based on W/VO2 square nano-pillar array[J]. Acta Optica Sinica, 39, 0316001(2019).

    [22] Liu Y Y, Liu H, Jin Y et al. Ultra-broadband perfect absorber utilizing a multi-size rectangular structure in the UV-MIR range[J]. Results in Physics, 18, 103336(2020).

    [23] Zhou Y, Liang Z Z, Qin Z et al. Broadband long wavelength infrared metamaterial absorbers[J]. Results in Physics, 19, 103566(2020).

    [24] Wang Y, Xuan X F, Zhu L et al. Design of ultra-broadband and high-absorption metamaterial solar absorber[J]. Chinese Journal of Lasers, 49, 0903001(2022).

    [25] Huang T X, Young L, Qin J et al. Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films[J]. Optical Materials Express, 6, 3609-3621(2016).

    [26] Liu N, Langguth L, Weiss T et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 8, 758-762(2009).

    [27] Mosaddeq-Ur-Rahman M, Yu G, Krishna K M et al. Determination of optical constants of solgel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy[J]. Applied Optics, 37, 691-697(1998).

    [28] Chen X, Xue W R, Zhao C et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 38, 0123002(2018).

    [29] Song Z Y, Zhang J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 28, 12487-12497(2020).

    [30] Wang Q Z, Liu S Y, Ren G J et al. Multi-parameter tunable terahertz absorber based on graphene and vanadium dioxide[J]. Optics Communications, 494, 127050(2021).

    [31] Gao H X, Peng W, Chu S W et al. Refractory ultra-broadband perfect absorber from visible to near-infrared[J]. Nanomaterials, 8, 1038(2018).

    [32] Huang J, Li J N, Yang Y et al. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide[J]. Optics Express, 28, 7018-7027(2020).

    [33] Luo Y, Meng D J, Liang Z Z et al. Ultra-broadband metamaterial absorber in long wavelength Infrared band based on resonant cavity modes[J]. Optics Communications, 459, 124948(2020).

    [34] Zhou Y, Liang Z Z, Qin Z et al. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity[J]. Optics Express, 28, 1279-1290(2020).

    [35] Ling L, Hong C et al. Broadband perfect absorber in the visible range based on metasurface composite structures[J]. Materials, 15, 2612(2022).

    [36] Liu K, Liu Y Y, Deng F et al. Long-wave infrared ultra-broadband perfect absorber with embedded structure[J]. Acta Optica Sinica, 41, 2423002(2021).

    Yuting Chen, Wenrui Xue, Jing Zhang, Haotian Fan, Changyong Li. Infrared Ultra-Wide-Band Absorber Based on VO2, NaF, and TiO2[J]. Chinese Journal of Lasers, 2023, 50(6): 0613001
    Download Citation