• Infrared and Laser Engineering
  • Vol. 47, Issue 5, 503003 (2018)
Xie Shengwen1、2、*, Yang Cheng′ao1、2, Huang Shushan1、2, Yuan Ye1、2, Shao Fuhui1、2, Zhang Yi1、2, Shang Jinming1、2, Zhang Yu1、2, Xu Yingqiang1、2, Ni Haiqiao1、2, and Niu Zhichuan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0503003 Cite this Article
    Xie Shengwen, Yang Cheng′ao, Huang Shushan, Yuan Ye, Shao Fuhui, Zhang Yi, Shang Jinming, Zhang Yu, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 2 μm GaSb-based high power semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47(5): 503003 Copy Citation Text show less
    References

    [1] Peters M, Rossin V, Zucker E. High-power high-efficiency laser diodes at JDSU[C]//High-Power Diode Laser Technology and Applications V, 2007: 1217-1222.

    [2] Scholle K, Lamrini S, Koopmann P, et al. 2 μm Laser Sources and Their Possible Applications[M]. [S.L.] Frontiers in Guided Wave Optics and Optoelectronics, 2010.

    [3] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 1998, 54(2): 197-236.

    [4] Sun Quanshe, Chen Kunfeng, Shi Xueshun. Mid infrared laser power stabilizer[J]. Infrared and Laser Engineering, 2015, 44(7): 2127-2131. (in Chinese)

    [5] Zhang Dongyan, Wang Rongrui. Progress on mid-infrared lasers[J]. Laser & Infrared, 2011, 41(5): 487-491. (in Chinese)

    [7] Garbuzov D Z, Menna R J, Maiorov M A, et al. 2.3- to 2.7-μm room-temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers[C]//Optoelectronics ′99-Integrated Optoelectronic Devices. International Society for Optics and Photonics, 1999: 124-129.

    [8] Belenky G L, Kim J G, Shterengas L, et al. High-power 2.3 μm laser arrays emitting 10 W CW at room temperature[J]. Electronics Letters, 2004, 40(12): 737-738.

    [9] Belenky G, Shterengas L, Donetsky D, et al. Advances in Type-I GaSb based lasers[J]. Japanese Journal of Applied Physics, 2008, 47(10): 8236-8238.

    [10] Belenky G, Shterengas L, Kipshidze G, et al. Type-I diode lasers for spectral region above 3 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1426-1434.

    [11] Lin Y, Suchalkin S, Kipshidze G, et al. Effect of hole transport on performance of infrared type-II superlattice light emitting diodes[J]. Journal of Applied Physics, 2015, 117(16): 757.

    [12] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-II interband cascade laser[J]. Applied Physics Letters, 2002, 81(3): 397-399.

    [13] Vurgaftman I, Meyer J R. High-performance interband cascade lasers emitting in the 2.9-4.2 μm wavelength range[C]// SPIE, 2009, 7230: 747-748.

    [14] Bewley W W, Kim C S, Kim M, et al. A new generation of interband cascade lasers[C]//15th International Conference on Narrow Gap Systems, AIP Conference Proceeding, 2011, 1416(1): 46-48.

    [15] Vurgaftman I, Bewley W W, Merritt C D, et al. Physics of interband cascade lasers[C]//Quantum Sensing and Nanophotonic Devices IX, International Society for Optics and Photonics, 2012: 87-94.

    [16] Vurgaftman I, Meyer J R. Mid-IR distributed-feedback interband cascade lasers[C]//Quantum Sensing and Nanophotonic Devices X, 2013: 1372-1375.

    [17] Popov A, Sherstnev V, Yakovlev Y, et al. High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 μm[J]. Applied Physics Letters, 1996, 68(20): 2790-2792.

    [18] Simanowski S, Herres N, Mermelstein C, et al. Strain adjustment in (GaIn)(AsSb)/(AlGa)(AsSb) QWs for 2.3-2.7 μm laser structures[J]. Journal of Crystal Growth, 2000, 209(1): 15-20.

    [19] Mermelstein C, Rattunde M, Kiefer R, et al. Physics and applications of III-Sb-based type-I QW diode lasers[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4651: 173-184.

    [20] Kelemen M T, Rattunde M, Wagner J. Mid-infrared high-power diode lasers and modules[C]//SPIE, 2010, 7583:75830O.

    [22] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Applied Physics Letters, 2005, 87(15): 151109.

    [23] Hill C J, Mansour K, Qiu Y, et al. Thermoelectric cooled mid-IR interband cascade lasers[C]//Semiconductor Laser Conference, 2006 Conference Digest, 2006: 93-94.

    [24] Rodriguez J B, Cerutti L, Tournie E. GaSb-based, 2.2μm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature[J]. Applied Physics Letters, 2009, 94(2): 1875.

    [25] Tournié E, Sanchez D, Cerutti L. Single mode operation of monolithic GaSb VCSELs[C]//Mirsens, 2012.

    [26] Motyka M, Ryczko K, Sek G, et al. Type II quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared[J]. Optical Materials, 2012, 34(7): 1107-1111.

    [27] Weih R, Bauer A, Kamp M, et al. Interband cascade lasers with AlGaAsSb bulk cladding layers[J]. Optical Materials Express, 2013, 3(10): 1624-1631.

    [28] Tian Z, Hinkey R, Zhao F, et al. Interband cascade lasers with separate-confinement layers[C]//LEOS 2008-, Meeting of the IEEE Lasers and Electro-Optics Society, IEEE, 2008:749-750.

    [29] Mansour K, Hill C J, Qiu Y, et al. Dual-wavelength interband cascade lasers in mid-infrared spectral region[C]//Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on IET, 2008: 1-2.

    [30] Jiang Y, Li L, Tian Z, et al. Electrically widely tunable interband cascade lasers[J]. Journal of Applied Physics, 2014, 115(11): 2697-2702.

    [31] Vizbaras A, Dvinelis E, Trinkūnas A, et al. High-performance mid-infrared GaSb laser diodes for defence and sensing applications[C]//SPIE Defense, Sensing and Security, 2014:90-98.

    [32] Melngailis I. Maser action in InAs diodes[J]. Applied Physics Letters, 1963, 2(9): 176-178.

    [33] Caneau C, Srivastava A K, Dentai A G, et al. Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 microns[J]. Electronics Letters, 1985, 21(18): 815-817.

    [34] Chiu T H, Tsang W T, Ditzenberger J A, et al. Room‐temperature operation of InGaAsSb/AlGaSb double heterostructure lasers near 2.2 μm prepared by molecular beam epitaxy[J]. Applied Physics Letters, 1986, 49(17):1051-1052.

    [35] Choi H K, Eglash S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density[J]. Applied Physics Letters, 1992, 61: 1154-1156.

    [36] Lee H, York P K, Menna R J, et al. Room-temperature 2.78 μm AlGaAsSb/ GaInAsSb quantum-well lasers[J]. Appl Phys Lett, 1995, 66: 1942.

    [37] Garbuzov D Z, Martinelli R U, Lee H, et al. 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes[J]. Applied Physics Letters, 1997, 70(22): 2931-2933.

    [38] Rattunde M, Mermelstein C, Schmitz J, et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0 μm diode lasers[J]. Applied Physics Letters, 2002, 80(22): 4085-4087.

    [39] Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8): 2931.

    [40] Kelemen M T, Weber J, Rattunde M, et al. High-power 1.9 μm diode laser arrays with reduced far-field angle[J]. IEEE Photonics Technology Letters, 2006, 18(4):628-630.

    [41] Kim J G, Shterengas L, Martinelli R U, et al. High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers[J]. Applied Physics Letters, 2003, 83(10): 1926-1928.

    [42] Xing Junliang, Zhang Yu, Liao Yongping, et al. Investigation of interfaces in AlSb/InAs/Ga0.71In0.29Sb quantum wells by photoluminescence[J]. Journal of Applied Physics, 2014, 116(12): 406.

    [43] Xing Junliang, Zhang Yu, Liao Yongping, et al. Room-temperature operation of 2.4 μm InGaAsSb/A1GaAsSb quantum-well laser diodes with low-threshold current density[J]. Chinese Physics Letters, 2014, 31(5): 69-71.

    [44] Yong Cheng′ao, Zhang Yu, Liao Yongping, et al. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chinese Physics B, 2016, 25(2): 181-185.

    [45] Liao Yongping, Zhang Yu, Xing Junliang, et al. High power laser diodes of 2 μm AlGaAsSb/InGaSb type I quantum-wells[J]. Journal of Semiconductors, 2015, 36(5): 50-53.

    [46] Liao Yongping, Zhang Yu, Xing Junliang, et al. GaSb-based quantum wells 2 μm high power laser diode[J]. Chinese Journal of Laser, 2015, 42(S1): S102006. (in Chinese)

    [47] Peters M, Rossin V, Zucker E. High-power high-efficiency laser diodes at JDSU[C]//High-Power Diode Laser Technology and Applications V, 2007: 1217-1222.

    [48] Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8): 2931.

    [49] Li Z G, Liu G J, You M H, et al. 2.0 μm room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure[J]. Laser Physics, 2009, 19(6): 1230-1233.

    [50] Chen J, Kipshidze G, Shterengas L. Diode lasers with asymmetric waveguide and improved beam properties[J]. Applied Physics Letters, 2010, 96(24): 151.

    [51] Shterengas L, Liang R, Kipshidze G, et al. Cascade type-I quantum well diode lasers emitting 960-mW near 3-μm[J]. Applied Physics Letters, 2014, 105(16): 797-800.

    [52] Hosoda T, Feng T, Shterengas L, et al. High power cascade diode lasers emitting near 2-μm[J]. Applied Physics Letters, 2016, 108(13): 1089.

    CLP Journals

    [1] Yuan Ligang, Zhou Shouhuan, Zhao Hong, Chen Guo, Wei Lei, Li Bao, Wang Keqiang. 109.5 W output 1.94 micron Tm:YAP solid-state laser[J]. Infrared and Laser Engineering, 2019, 48(4): 405006

    Xie Shengwen, Yang Cheng′ao, Huang Shushan, Yuan Ye, Shao Fuhui, Zhang Yi, Shang Jinming, Zhang Yu, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 2 μm GaSb-based high power semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47(5): 503003
    Download Citation