• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 3, 315 (2018)
MA Ming1、2、*, CHEN Sheng-Bo1, LU Tian-Qi1, LU Peng1, and XIAO Yang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.03.011 Cite this Article
    MA Ming, CHEN Sheng-Bo, LU Tian-Qi, LU Peng, XIAO Yang. Study on scale problems based on the diviner thermal infrared emissivity of LRO satellite[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 315 Copy Citation Text show less
    References

    [2] Li X, Strahler A H, Friedl M A. A conceptual model for effective directional emissivity from nonisothermal surfaces[J]. IEEE Transactions on Geoscience & Remote Sensing, 1999a, 37(5):2508-2517.

    [3] Raffy M, Gregoire C. Semi-empirical models and scaling: A least square method for remote sensing experiments[J]. International Journal of Remote Sensing, 1998, 19(13):2527-2541.

    [4] Hu Z, Islam S. A framework for analyzing and designing scale invariant remote sensing algorithms[J]. IEEE Transactions on Geoscience & Remote Sensing, 1997, 35(3):747-755.

    [7] Balick L K, Scoggins R K, LINK L E. Inclusion of a simple vegetation layer in terrain temperature models for thermal IR signature prediction[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1981, (3):143-152.

    [8] Norman J M, Becker F. Terminology in thermal infrared remote sensing of natural surfaces[J]. Remote Sensing Reviews, 1995, 12(3-4): 159-173.

    [9] Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1996, 34(4): 892-905.

    [10] Li X, Wang J. The definition of effective emissivity of land surface at the scale of remote sensing pixels[J]. Chinese Science Bulletin, 1999, 44(23): 2154-2158.

    [11] Albers B J, Strahler A H, Li X W, et al. Radiometric measurements of gap probability in conifer tree canopies.[J]. Remote Sensing of Environment, 1990, 34(3):179-192.

    [12] Li X W, Wang J D. The definition of effective emissivity of land surface at the scale of remote sensing pixels. Chinese Science Bulletin, 1999, 44(23): 2154-2158.

    [13] Li X, Wang Z. Comments on reciprocity in the BRDF modelling. Progress in Natural Science, 1999, 3: 99-103.

    [14] Hu Z, Islam S. A framework for analyzing and designing scale invariant remote sensing algorithms. IEEE Transaction on Geoscience and Remote Sensing, 1997, 13: 747-755.

    [16] Feng G, Wang M, Wang M, et al. Connotations of pixel-based scale effect in remote sensing and the modified fractal-based analysis method[J]. Computers & Geosciences, 2017, 103(C):183-190.

    [17] Greenhagen B T, Lucey P G, Wyatt M B, et al. Global silicate mineralogy of the Moon from the Diviner Lunar Radiometer[J]. Science, 2010, 329(5998): 1507-1509.

    [18] Allen C C, Greenhagen B T, Donaldson hanna K L, et al. Analysis of lunar pyroclastic deposit FeO abundances by LRO Diviner[J]. Journal of Geophysical Research: Planets, 2012, 117(E12).

    [20] Bandfield J L, Ghent R R, Vasavada A R, et al. Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data[J]. Journal of Geophysical Research Atmospheres, 2011, 116(12):96-111.

    MA Ming, CHEN Sheng-Bo, LU Tian-Qi, LU Peng, XIAO Yang. Study on scale problems based on the diviner thermal infrared emissivity of LRO satellite[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 315
    Download Citation