• Photonics Research
  • Vol. 10, Issue 3, 711 (2022)
Xinglin Zeng1、*, Wenbin He1, Michael H. Frosz1, Andreas Geilen1, Paul Roth1, Gordon K. L. Wong1, Philip St.J. Russell1, and Birgit Stiller1、2
Author Affiliations
  • 1Max-Planck Institute for the Science of Light, 91058 Erlangen, Germany
  • 2Department of Physics, Friedrich-Alexander-Universität, 91058 Erlangen, Germany
  • show less
    DOI: 10.1364/PRJ.443706 Cite this Article Set citation alerts
    Xinglin Zeng, Wenbin He, Michael H. Frosz, Andreas Geilen, Paul Roth, Gordon K. L. Wong, Philip St.J. Russell, Birgit Stiller. Stimulated Brillouin scattering in chiral photonic crystal fiber[J]. Photonics Research, 2022, 10(3): 711 Copy Citation Text show less
    References

    [1] R. Y. Chiao, C. H. Townes, B. P. Stoicheff. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett., 12, 592-595(1964).

    [2] A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon., 2, 1-59(2010).

    [3] B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, G. Bahl. Brillouin integrated photonics. Nat. Photonics, 13, 664-677(2019).

    [4] S. P. Smith, F. Zarinetchi, S. Ezekiel. Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett., 16, 393-395(1991).

    [5] X. Bao, L. Chen. Recent progress in Brillouin scattering based fiber sensors. Sensors, 11, 4152-4187(2011).

    [6] B. Stiller, M. Merklein, C. Wolff, K. Vu, P. Ma, S. J. Madden, B. J. Eggleton. Coherently refreshing hypersonic phonons for light storage. Optica, 7, 492-497(2020).

    [7] A. Zarifi, M. Merklein, Y. Liu, A. Choudhary, B. J. Eggleton, B. Corcoran. Wide-range optical carrier recovery via broadened Brillouin filters. Opt. Lett., 46, 166-169(2021).

    [8] P. Dainese, P. St.J. Russell, N. Y. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys., 2, 388-392(2006).

    [9] J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, L. Thevenaz. Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. Opt. Express, 15, 15517-15522(2007).

    [10] P. St.J. Russell, R. Beravat, G. K. L. Wong. Helically twisted photonic crystal fibres. Phil. Trans. R. Soc. A, 375, 20150440(2017).

    [11] R. P. Sopalla, G. K. L. Wong, N. Y. Joly, M. H. Frosz, X. Jiang, G. Ahmed, P. St.J. Russell. Generation of broadband circularly polarized supercontinuum light in twisted photonic crystal fibers. Opt. Lett., 44, 3964-3967(2019).

    [12] S. Davtyan, D. Novoa, Y. Chen, M. H. Frosz, P. St.J. Russell. Polarization-tailored Raman frequency conversion in chiral gas-filled hollow-core photonic crystal fibers. Phys. Rev. Lett., 122, 143902(2019).

    [13] M. O. van Deventer, A. J. Boot. Polarization properties of stimulated Brillouin scattering in single-mode fibers. J. Lightwave Technol., 12, 585-590(1994).

    [14] D. Williams, X. Bao, L. Chen. Effects of polarization on stimulated Brillouin scattering in a birefringent optical fiber. Photon. Res., 2, 126-137(2014).

    [15] K. Y. Song, W. Zou, Z. He, K. Hotate. All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Opt. Lett., 33, 926-928(2008).

    [16] G. Prabhakar, X. Liu, J. Demas, P. Gregg, S. Ramachandran. Phase conjugation in OAM fiber modes via stimulated Brillouin scattering. Conference on Lasers and Electro-Optics, FTh1M.4(2018).

    [17] R. Beravat, G. K. L. Wong, X. M. Xi, M. H. Frosz, P. St.J. Russell. Current sensing using circularly birefringent twisted solid-core photonic crystal fiber. Opt. Lett., 41, 1672-1675(2016).

    [18] V. M. N. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, C. E. Campanella. Gyroscope technology and applications: a review in the industrial perspective. Sensors, 17, 2284(2017).

    [19] K. Tsurumoto, R. Kuroiwa, H. Kano, Y. Sekiguchi, H. Kosaka. Quantum teleportation-based state transfer of photon polarization into a carbon spin in diamond. Commun. Phys., 2, 74(2019).

    [20] R. W. Boyd. Nonlinear Optics(2008).

    [21] V. Laude, A. Khelif, S. Benchbane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, H. Maillotte. Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Phys. Rev. B, 71, 045107(2005).

    [22] T. Okoshi, K. Kikuchi, A. Nakayama. Novel method for high resolution measurement of laser output spectrum. Electron. Lett., 16, 630-631(1980).

    [23] R. D. Birch. Fabrication and characterisation of circularly birefringent helical fibres. Electron. Lett., 23, 50-52(1987).

    [24] S. Loranger, Y. Chen, P. Roth, M. H. Frosz, G. K. L. Wong, P. St.J. Russell. Bragg reflection and conversion between helical Bloch modes in chiral three-core photonic crystal fiber. J. Lightwave Technol., 38, 4100-4107(2020).

    [25] R. I. Laming, D. N. Payne. Electric-current sensors employing spun highly birefringent optical fibers. J. Lightwave Technol., 7, 2084-2094(1989).

    [26] X. Zeng, W. He, J. Huang, P. Roth, M. H. Frosz, G. K. L. Wong, B. Stiller, P. St.J. Russell. Stimulated Brillouin scattering of helical Bloch modes in 3-fold rotationally symmetric chiral 4-core photonic crystal fibre. CLEO, CD-6.4(2021).

    [27] A. Küng, P.-A. Nicati, P. A. Robert. Brillouin fiber optic current sensor. Optical Fiber Sensors, We21(1996).

    [28] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).

    [29] S. Huang, L. Thevenaz, K. Toyama, B. Y. Kim, H. J. Shaw. Optical Kerr-effect in fiber-optic Brillouin ring laser gyroscopes. IEEE Photon. Technol. Lett., 5, 365-367(1993).

    [30] J. C. Knight, T. A. Birks, P. St.J. Russell, D. M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 21, 1547-1549(1996).

    [31] L. Richter, H. Mandelberg, M. Kruger, P. McGrath. Linewidth determination from self-heterodyne measurements with subcoherence delay times. IEEE J. Quantum Electron., 22, 2070-2074(1986).

    CLP Journals

    [1] Jingzhan Shi, Fangzheng Zhang, De Ben, Shilong Pan. Photonic-assisted single system for microwave frequency and phase noise measurement[J]. Chinese Optics Letters, 2020, 18(9): 092501

    [2] Yuqiu Xu, Yonglan Yang, Xing Li, Xin Wang, Weiwen Zou. Chip-scale Brillouin instantaneous frequency measurement by use of one-shot frequency-to-power mapping based on lock-in amplification[J]. Chinese Optics Letters, 2021, 19(11): 113902

    [3] Yuewen Zhou, Fangzheng Zhang, Shilong Pan. Instantaneous frequency analysis of broadband LFM signals by photonics-assisted equivalent frequency sampling[J]. Chinese Optics Letters, 2021, 19(1): 013901

    [4] Beibei Zhu, Min Xue, Changyuan Yu, Shilong Pan. Broadband instantaneous multi-frequency measurement based on chirped pulse compression[J]. Chinese Optics Letters, 2021, 19(10): 101202

    [5] Muguang Wang, Yu Tang, Jian Sun, Jing Zhang, Qi Ding, Beilei Wu, Fengping Yan. Photonic-assisted FSK signal generation based on carrier phase-shifted double sideband modulation[J]. Chinese Optics Letters, 2021, 19(10): 103901

    Xinglin Zeng, Wenbin He, Michael H. Frosz, Andreas Geilen, Paul Roth, Gordon K. L. Wong, Philip St.J. Russell, Birgit Stiller. Stimulated Brillouin scattering in chiral photonic crystal fiber[J]. Photonics Research, 2022, 10(3): 711
    Download Citation