• Advanced Photonics
  • Vol. 6, Issue 2, 026003 (2024)
Sachleen Singh1、†, Bereneice Sephton2、*, Wagner Tavares Buono1, Vincenzo D’Ambrosio2, Thomas Konrad3, and Andrew Forbes1
Author Affiliations
  • 1University of the Witwatersrand, School of Physics, Johannesburg, South Africa
  • 2Università degli studi di Napoli “Federico II”, Dipartimento di Fisica “E. Pancini”, Napoli, Italy
  • 3University of KwaZulu-Natal, School of Chemistry and Physics, Durban, South Africa
  • show less
    DOI: 10.1117/1.AP.6.2.026003 Cite this Article Set citation alerts
    Sachleen Singh, Bereneice Sephton, Wagner Tavares Buono, Vincenzo D’Ambrosio, Thomas Konrad, Andrew Forbes. Light correcting light with nonlinear optics[J]. Advanced Photonics, 2024, 6(2): 026003 Copy Citation Text show less
    References

    [1] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [2] M. Wang et al. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight, 2, 12(2022).

    [3] C. He, Y. Shen, A. Forbes. Towards higher-dimensional structured light. Light: Sci. Appl., 11, 205(2022).

    [4] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [5] A. E. Willner et al. Orbital angular momentum of light for communications. Appl. Phys. Rev., 8, 041312(2021).

    [6] G. Lazarev et al. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics. Opt. Express, 27, 16206-16249(2019).

    [7] A. Rubano et al. Q-plate technology: a progress review. J. Opt. Soc. Am. B, 36, D70-D87(2019).

    [8] S. Scholes et al. Structured light with digital micromirror devices: a guide to best practice. Opt. Eng., 59, 041202(2020).

    [9] A. H. Dorrah, F. Capasso. Tunable structured light with flat optics. Science, 376, eabi6860(2022).

    [10] C. Li et al. Arbitrarily structured quantum emission with a multifunctional metalens. eLight, 3, 19(2023).

    [11] W. T. Buono, A. Forbes. Nonlinear optics with structured light. Opto-Electron. Adv., 5, 210174(2022).

    [12] H.-J. Wu et al. Observation of anomalous orbital angular momentum transfer in parametric nonlinearity. Phys. Rev. Lett., 130, 153803(2023).

    [13] Y. Chen et al. Phase-matching controlled orbital angular momentum conversion in periodically poled crystals. Phys. Rev. Lett., 125, 143901(2020).

    [14] Y. Tang et al. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photonics, 14, 658-662(2020).

    [15] H.-J. Wu et al. Conformal frequency conversion for arbitrary vectorial structured light. Optica, 9, 187-196(2022).

    [16] M. Luttmann et al. Nonlinear up-conversion of a polarization möbius strip with half-integer optical angular momentum. Sci. Adv., 9, eadf3486(2023).

    [17] B. P. da Silva et al. Observation of a triangular-lattice pattern in nonlinear wave mixing with optical vortices. Optica, 9, 908-912(2022).

    [18] N. R. da Silva et al. Stimulated parametric down-conversion with vector vortex beams. Phys. Rev. Appl., 15, 024039(2021).

    [19] S. Hancock et al. Free-space propagation of spatiotemporal optical vortices. Optica, 6, 1547-1553(2019).

    [20] F. Steinlechner et al. Frequency conversion of structured light. Sci. Rep., 6, 21390(2016).

    [21] Z.-Y. Zhou et al. Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals. Sci. Rep., 4, 5650(2014).

    [22] B. Sephton et al. Spatial mode detection by frequency upconversion. Opt. Lett., 44, 586-589(2019).

    [23] Y. Xu et al. Orthogonal spatial coding with stimulated parametric down-conversion. Opt. Express, 31, 42723-42729(2023).

    [24] C. Schlickriede et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett., 20, 4370-4376(2020).

    [25] X. Qiu et al. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica, 5, 208-212(2018).

    [26] P. S. Ribeiro et al. Observation of image transfer and phase conjugation in stimulated down-conversion. Phys. Rev. Lett., 87, 133602(2001).

    [27] A. V. Paterova et al. Hyperspectral infrared microscopy with visible light. Sci. Adv., 6, eabd0460(2020).

    [28] J. Rocha et al. Speckle filtering through nonlinear wave mixing. Opt. Lett., 46, 3905-3908(2021).

    [29] S. Trajtenberg-Mills, I. Juwiler, A. Arie. On-axis shaping of second-harmonic beams. Laser Photonics Rev., 9, L40-L44(2015).

    [30] E. Almeida, O. Bitton, Y. Prior. Nonlinear metamaterials for holography. Nat. Commun., 7, 12533(2016).

    [31] X. Fang et al. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv. Photonics, 3, 015001(2021).

    [32] X.-Y. Zhang et al. Real-time superresolution interferometric measurement enabled by structured nonlinear optics. Laser Photonics Rev., 17, 2200967(2023).

    [33] B. Sephton et al. Quantum transport of high-dimensional spatial information with a nonlinear detector. Nat. Commun., 14, 8243(2023).

    [34] X. Qiu, H. Guo, L. Chen. Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion. Nat. Commun., 14, 8244(2023).

    [35] D. Wei et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 12, 596-600(2018).

    [36] X. Xu et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature, 609, 496-501(2022).

    [37] Y. Zhang et al. Nonlinear photonic crystals: from 2D to 3D. Optica, 8, 372-381(2021).

    [38] Q. Guo et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature, 613, 53-59(2023). https://doi.org/10.1038/s41586-022-05393-7

    [39] O. Lib, Y. Bromberg. Quantum light in complex media and its applications. Nat. Phys., 18, 986-993(2022).

    [40] S. Gigan et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys.: Photonics, 4, 042501(2022).

    [41] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [42] H. Cao, A. P. Mosk, S. Rotter. Shaping the propagation of light in complex media. Nat. Phys., 18, 994-1007(2022).

    [43] A. G. de Oliveira et al. Real-time phase conjugation of vector vortex beams. ACS Photonics, 7, 249-255(2019).

    [44] R. A. Fisher. Optical Phase Conjugation(2012).

    [45] G. Sorelli et al. Entanglement protection of high-dimensional states by adaptive optics. New J. Phys., 21, 023003(2019).

    [46] R. Grunwald et al. High-flexibility control of structured light with combined adaptive optical systems. Photonics, 9, 42(2022).

    [47] M. J. Booth. Adaptive optical microscopy: the ongoing quest for a perfect image. Light: Sci. Appl., 3, e165(2014).

    [48] Y. Dai et al. Active compensation of extrinsic polarization errors using adaptive optics. Opt. Express, 27, 35797-35810(2019).

    [49] K. M. Hampson et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers, 6, 68(2021).

    [50] Z. Cheng et al. High-gain and high-speed wavefront shaping through scattering media. Nat. Photonics, 17, 299-305(2023).

    [51] D. Bachmann et al. Highly transmitting modes of light in dynamic atmospheric turbulence. Phys. Rev. Lett., 130, 073801(2023).

    [52] S. M. Popoff et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [53] I. M. Vellekoop, A. Mosk. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett., 101, 120601(2008).

    [54] A. Klug, C. Peters, A. Forbes. Robust structured light in atmospheric turbulence. Adv. Photonics, 5, 016006(2023).

    [55] I. Nape et al. Revealing the invariance of vectorial structured light in complex media. Nat. Photonics, 16, 538-546(2022).

    [56] P. Pai et al. Scattering invariant modes of light in complex media. Nat. Photonics, 15, 431-434(2021).

    [57] W. Zhang et al. Phase-matching in nonlinear optical compounds: a materials perspective. Chem. Mater., 29, 2655-2668(2017).

    [58] N. Bloembergen. Conservation laws in nonlinear optics. J. Opt. Soc. Am., 70, 1429-1436(1980).

    [59] T. W. Clark et al. Comparison of beam generation techniques using a phase only spatial light modulator. Opt. Express, 24, 6249-6264(2016).

    [60] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [61] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Sci. Appl., 8, 90(2019).

    [62] V. Lakshminarayanan, A. Fleck. Zernike polynomials: a guide. J. Mod. Opt., 58, 545-561(2011).

    [63] G. D. Love. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. Appl. Opt., 36, 1517-1524(1997).

    [64] J. Wang, D. E. Silva. Wave-front interpretation with Zernike polynomials. Appl. Opt., 19, 1510-1518(1980).

    [65] W. Chen et al. Continuous-wave mid-infrared laser sources based on difference frequency generation. C. R. Phys., 8, 1129-1150(2007).

    [66] M. Broyer et al. Intracavity CW difference frequency generation by mixing three photons and using Gaussian laser beams. J. Phys., 46, 523-533(1985).

    [67] P. M. Vaughan, R. Trebino. Optical-parametric-amplification imaging of complex objects. Opt. Express, 19, 8920-8929(2011).

    [68] A. Barh et al. Parametric upconversion imaging and its applications. Adv. Opt. Photonics, 11, 952-1019(2019).

    [69] S. Singh et al. Frequency conversion of orbital angular momentum with optimized efficiency and modal purity. J. Opt. Soc. Am. B, 40, 3128-3136(2023).

    [70] L. Kang et al. First-principles design and simulations promote the development of nonlinear optical crystals. Acc. Chem. Res., 53, 209-217(2019).

    [71] A. Autere et al. Nonlinear optics with 2D layered materials. Adv. Mater., 30, 1705963(2018).

    [72] J. Chen et al. High-performance second-harmonic-generation (SHG) materials: new developments and new strategies. Acc. Chem. Res., 54, 2775-2783(2021).

    [73] M.-Y. Li et al. HgCuPS4: an exceptional infrared nonlinear optical material with defect diamond-like structure. Chem. Mater., 32, 4331-4339(2020). https://doi.org/10.1021/acs.chemmater.0c01258

    [74] W. T. Buono et al. Chiral relations and radial-angular coupling in nonlinear interactions of optical vortices. Phys. Rev. A, 101, 043821(2020).

    [75] M. B. Gaarde, A. L’Huillier, M. Lewenstein. Theory of high-order sum and difference frequency mixing in a strong bichromatic laser field. Phys. Rev. A, 54, 4236(1996).

    [76] V. V. Kotlyar et al. Product of two Laguerre–Gaussian beams. Photonics, 9, 496(2022).

    [77] G. Alves et al. Conditions for optical parametric oscillation with a structured light pump. Phys. Rev. A, 98, 063825(2018).

    Sachleen Singh, Bereneice Sephton, Wagner Tavares Buono, Vincenzo D’Ambrosio, Thomas Konrad, Andrew Forbes. Light correcting light with nonlinear optics[J]. Advanced Photonics, 2024, 6(2): 026003
    Download Citation