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Abstract. Structured light, where complex optical fields are tailored in all their degrees of freedom, has become
highly topical of late, advanced by a sophisticated toolkit comprising both linear and nonlinear optics.
Removing undesired structure from light is far less developed, leveraging mostly on inverting the distortion,
e.g., with adaptive optics or the inverse transmission matrix of a complex channel, both requiring that the
distortion be fully characterized through appropriate measurement. We show that distortions in spatially
structured light can be corrected through difference-frequency generation in a nonlinear crystal without any
need for the distortion to be known. We demonstrate the versatility of our approach using a wide range of
aberrations and structured light modes, including higher-order orbital angular momentum (OAM) beams,
showing excellent recovery of the original undistorted field. To highlight the efficacy of this process, we
deploy the system in a prepare-and-measure communications link with OAM, showing minimal cross talk
even when the transmission channel is highly aberrated, and outline how the approach could be extended
to alternative experimental modalities and nonlinear processes. Our demonstration of light-correcting light
without the need for measurement opens an approach to measurement-free error correction for classical and
quantum structured light, with direct applications in imaging, sensing, and communication.
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1 Introduction
Light, and with it, the transverse tailoring of phase and ampli-
tude to create so-called structured light,1,2 presents a large field
of active research with wide-ranging applications,3 from optical
trapping4 to communication.5 The toolkit has become highly
versatile covering generation, control, and detection schemes
that include liquid crystals,6,7 digital micromirror devices,8

and metasurfaces.9,10 Beyond linear optics, structured light con-
trol with nonlinear optics has become topical of late,11 shifting
the focus of attention from wavelength change and efficiency to
spatial modal creation, control, and detection. This has led to
a reinvention of the field with a modern twist, ushering in
new selection rules12–14 and processes15–18 while fostering wide-
reaching applications, including spatial mode creation19–21 and

detection,22,23 image processing24–27 and filtering,28 hologra-
phy,29–31 enhanced interferometry,32 high-dimensional teleporta-
tion,33,34 as well as the development of modern nonlinear
materials.35–38

Unfortunately, the spatial structure of light becomes distorted
in complex channels,39–42 arresting its full potential. Although
phase conjugation of structured light is possible by nonlinear
optics,43 it does not correct the distortion but rather produces
the negative of it, requiring a time reversal step.44 To mitigate
these drawbacks, a measurement-based approach to structured
light correction is now ubiquitous, for example, using adaptive
optics45–49 and wavefront shaping,50 inversion of the transmission
matrix of complex channels,51–53 and finding invariances that
remain distortion-free.54–56

Here we show that light can correct light without the need for
any measurement. We exploit parametric wave mixing by differ-
ence-frequency generation (DFG) in a nonlinear crystal (NLC)
to restore the information encoded into the structure of light,
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even after it has passed through a highly aberrating channel.
In order to achieve this, two input beams, one with information
encoded into its structure and the other as a probe, are passed
through the same aberrating channel followed by DFG in an
NLC, returning only the desired information. This is due to
the nature of the parametric wave-mixing process, which out-
puts the product of one of the input modes with the conjugate
of the other. We demonstrate the versatility of our approach
using a wide range of aberrations and structured light modes,
from Gaussian beams to orbital angular momentum (OAM)
beams and their superpositions and show excellent recovery
of the original undistorted field. To highlight the efficacy of
this, we consider the cross talk matrix of a 15-dimensional
OAM alphabet across a noisy channel comprising an arbitrary
aberration, showing very good recovery of the information.
We outline how our approach can be used across multiple wave-
lengths that could be close or far apart, offering an approach to
measurement-free error correction for classical and quantum
structured light.

2 Materials and Methods

2.1 Concept

With DFG, two electric fields (E1 and E2) mix in a second-order
NLC to generate a third beam (EG). Here each field possesses a
transverse spatial structure Mnðr;ϕÞ and polarization, indicated
by the unit vector ên,

En ¼ Mnðr;ϕÞên; (1)

where n ¼ f1, 2; Gg refers to the first, second, and generated
beams, whereas ðr;ϕÞ are the radial and azimuthal coordinates
in the transverse spatial plane. Coherent amplification of the
generated field occurs along the crystal length when the phase-
matching conditions are satisfied. This applies a constraint
between the wave vectors and interacting fields,57 ensuring
conservation of energy and momentum in the process. For DFG,
the energy of the generated field in the paraxial regime is
aptly given by the difference of the input angular frequencies,
ω1 − ω2 ¼ ωG and wave vectors, k1 − k2 ¼ kG for the trans-
verse components of the interacting fields. A sufficiently large
bandwidth for phase matching of the longitudinal component in
the thin-crystal limit causes the spatial profile of the generated
field to be reduced to the product of the two input fields.58

Following from the conservation rules, the output field then
holds the combined information of the input fields such that
the spatial structure of the generated field is proportional to that
of the first input and the complex conjugate of the second input,

MG ¼ ηM1M�
2; (2)

where η is a constant related to the efficiency of the process and
* indicates complex conjugation.

By considering the complex form of the spatial structures at
the beam waist (neglecting propagation terms for simplicity),
Mn ¼ Anðr;ϕÞeiΦnðr;ϕÞ, where Aðr;ϕÞ is the amplitude and
Φðr;ϕÞ the phase, the effect of DFG is to conjugate the phase
distribution of the second beam and add it to the phase distri-
bution of the first, ΦG ¼ Φ1 þ ð−Φ2Þ. Where the second
beam’s phase is uniform or null, the generated beam phase is
simply that which is carried by the first (ΦG ¼ Φ1). As a result,
the generated beam will contain any desired structure (Φinfo)

that the first beam contains. This, however, is true for any addi-
tional distortions (ΦAb) experienced by the beam as well. For
such an event, the generated beam will then have a phase of
ΦG ¼ Φinfo þΦAb, such that the modal information or purity
is degraded and seen in distortion of the intensity profile upon
propagation. One may now consider the case where the contri-
bution of the second beam can be exploited. Without loss of
generality, we consider an example where we seek to restore
Laguerre–Gaussian (LGl) modes of zero radial index (p ¼ 0)
and arbitrary l, from an aberrated state. Figure 1(a) illustrates
this concept. Notably, these structured modes hold OAM as a
degree of freedom and are characterized by the integer param-
eter l, which yields lℏOAM per photon and l number of twists
in the phase front per wavelength (red to blue transitions in the
rightmost phase inset). To correct the aberration, one need only
see that by using the same aberration phase on the second beam,
the original helical phase can be restored. The distortion of the

Fig. 1 (a) Concept of correcting aberrated states by using light to
correct light. The product of an input beam (middle mode) with
another containing the same phase aberration (exponential term)
cancels the identical distortion present in the structure carried by
a second input beam (left mode) to restore the unaberrated state
(right mode) in the difference-frequency beam generated from
nonlinear wave mixing. Beams are shown in the far field for con-
ceptual clarity. (b) Experimental setup used to apply and correct
distortions on structured modes with DFG. SLM, spatial light
modulator; HWP, half-wave plate; I, aperture; DM, dichroic
mirror; NLC, nonlinear crystal; F1, short-pass and F2 long-pass
wavelength filters; and L1 (18 mm), L2 (200 mm), L3 (300 mm),
L4 (75 mm), L5 (500 mm), L6 (100 mm), L7 (750 mm), and
L8 (100 mm) are lenses.
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LG mode amplitude (depicted alongside the phase terms) is then
corrected to reveal the characteristic doughnut intensity distri-
bution. Here, due to the naturally occurring phase conjugation in
the crystal, the initial disturbance, e.g.,M1 ¼ LGðl¼2ÞeiΦAb , also
present in the second beam (using a Gaussian profile to conserve
the structure of the first beam), e.g.,M2 ¼ LGðl¼0ÞeiΦAb , cancels
the distortion in the generated beam, ΦG ¼ ðΦinfo þΦAbÞ−
ΦAb ¼ Φinfo, while preserving the initial phase and amplitude.
Cancellation of the unwanted disturbance, such as turbulence,
and successful transfer of the desired structure carried by the
first beam is therefore achieved using the structure of one light
beam to correct that of the other. Note that while we have out-
lined the concept with second-order nonlinear processes (χ2),
the core principle holds for parametric wave-mixing processes
of even order (χ2n) in higher-order difference wave mixing too,
or even with cascaded crystals for better wavelength selection
(see Appendix).

2.2 Experimental Implementation

To demonstrate the principle of using a second beam in DFG to
correct phase aberrations on an initial input beam, we imple-
mented the experimental setup, as shown in Fig. 1(b). Here,
two continuous wave lasers of wavelengths 532 nm (VIS) and
1550 nm (IR) were collimated and expanded onto liquid crystal
spatial light modulators (SLM1, SLM2), before demagnification
and imaging onto a type-0 NLC (periodically poled KTP) with
a 4f-lens system (L5, L6 and L7, L8). Complex amplitude
modulation59 was used to encode the desired states of each input
beam, which we will refer to as probe and signal beams to
clarify their roles in the correction process. Apertures (I1, I2)
in the Fourier plane spatially filtered the first-order modulated
light from the SLMs, respectively, forming the signal and probe
input modes. Half-wave plates (HWP1, HWP2) in each arm
then, respectively, adjusted the polarization for phase matching
and a dichroic mirror (DM) was used to collinearly combine
the beams before the NLC. A long- and a short-pass wavelength
filters (F1, F2) placed after the crystal isolated the DFG beam.
The generated beam was then focused onto a camera by a lens in
a 2f configuration (F9), detecting the Fourier plane of the DFG
modes. Here we choose to observe the far-field intensity as the
phase-to-amplitude coupling allows us to clearly discern the
presence of aberration, highlighting the fact that the aberrations
never need be known.

3 Results
We now experimentally realize this concept with the results
shown in Fig. 2. Here, three azimuthally varying phase aberra-
tions, ΦAb ¼ expðiπ cosðnϕÞÞ, where n ¼ f1, 2; 3g (shown in
the top insets) were applied to the IR Gaussian signal beam.
The Gaussian structure and flat phase of the IR probe beam are
retained for the process. As expected, aberrations on the gener-
ated mode distort the beams in the far field, as seen in the top
row. By employing the light-correcting light approach with
DFG, implemented by now applying the same aberrational
phase to the VIS probe beam, we find the initial structure is cor-
rected and confirmed with unaberrated Gaussian distributions in
the bottom row.

In Fig. 3, we next explore aberrations having both radial
and azimuthal dependence, while also expanding the encoded
states to higher-order modes. We note any spatial modes may
be used and chose LG due to their extensive applications from

communications to metrology.60,61 The Zernike basis (Zm;n)
62

with azimuthal frequency, n, and radial order, m, is used
to simulate the unwanted distortions, forming a natural basis
for optical aberrations.63,64 Modes representing astigmatism
(Z2,2; Z2;−2) and trefoil (Z3,3; Z3;−3) were then chosen from
the Zernike family and applied with the same strength (i.e.,
the beams have the same phase gradient and periodicity at each
overlapping point). The expected doughnut intensity distribu-
tions of these LG states (first three panels) show good agreement
with the unaberrated DFG intensities (NA, top right of each
modal set). After the structured signal beam encounters each
aberration, however, significant deviations in the DFG intensity
profiles (Ab.) are observed, obscuring the modes and related in-
formation. Applying the same phase distortion to the Gaussian
probe shows successful restoration of the modal structure in the
DFG beam by cancellation of the aberrational phase (Cor.).
Applicability to states with more modal complexity is further
demonstrated by constructing modes from a superpositon of
LG states [ 1ffiffi

2
p ðLGl þ LG−lÞ], giving 0 to π wedge phase steps

with petal intensity structures. This is shown in the last two pan-
els, where l ¼ f2, 3g, respectively. Similarly, aberrations caused
notable distortions in the detected intensity distributions but ex-
cellent restoration when applying our correction approach.

Greater aberrational complexity is also introduced by taking
three, ΦAb ¼ 5Z2,2 þ 5Z2;−2 þ 10Z3,3, and four, ΦAb ¼ 10Z2,2−
10Z2;−2 − 10Z3,3 þ 10Z3;−3, mode superpositions of the Zernike
basis states. This is shown in Figs. 4(a) and 4(b), respectively,
where the signal beam was also encoded with LG modes of
l ∈ ½1, 6�. Here deleterious distortions obscure the encoded
doughnuts (top insets) into intermittent linear structures (bottom
rows, Ab.). With the same phase distortion on the probe beam, we
again find the output structure returns to the ring profile. While
the modes are excellently restored, a reduction in the correction
efficacy appears as the l value increases. This can be attributed to
an increase in the generated beam size of wl ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjlj þ 1Þp
,

Fig. 2 Three azimuthal aberrations (top insets) were applied to
a Gaussian signal beam, resulting in measured intensity distor-
tions in the far field (aberrated row). Application of the nonlinear
correction process with a probe beam results in the recovery of
the initial Gaussian beam, as evident in the measured far-field
intensities in the bottom row (corrected). All intensities are nor-
malized to 1.

Singh et al.: Light correcting light with nonlinear optics
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where wl is the OAM beam waist and w0 is the waist of the fun-
damental Gaussian mode. As a result of increasing size, greater
interaction with the optical elements occurs, leading to the modes
obtaining additional peripheral aberrations not encoded and ac-
counted for in the probe profile. In Fig. 4(c), the same four-mode
aberration is applied to the previous petal superpositions, where
l ∈ ½1, 6�. The aberrating phases on the signal beam similarly
destroy the DFG structure, such that they can no longer be iden-
tified in comparison to the expected distributions [top insets in
Fig. 4(c)]. Excellent agreement then occurs when the probe is
used to correct for the distortion. While a small decrease in cor-
rection efficacy is also seen as l increases, favorable restoration is
still seen up to the largest state.

We now consider the practical application of our concept
where the aberrating medium is dispersive. In such a case,
the phase accumulation for the two wavelengths will differ

by a factor α ¼ φλ2
φλ1

¼ λ1nλ2
λ2nλ1

, a constant value that is fixed by

the chosen wavelengths. Accordingly, one need only account
for a difference in the strength for the same aberrational distri-
bution. This is easily addressed by our scheme, as shown by two
approaches in Fig. 5. In Fig. 5(a), resizing one beam relative to
the other, after undergoing distortion, achieves a change in the
respective aberrational strength overlapping with the unsized
beam. Intuitively, such resizing alters the phase gradient seen
by the other beam and so can be used to perfectly correct for

Fig. 3 Experimental correction of astigmatism and trefoil aberrations for five different spatial
states (column-wise), where l ¼ f1, 2; 3g, and petal modes with LG superpositions
( 1ffiffi

2
p ðLGl þ LG−lÞ), where l ¼ f2, 3g. The correction has been applied for both vertical and oblique
combinations of aberrations. Further, every such combination has been corrected for both positive
and negative strength coefficients. The applied phase distortion has been shown in the left panel.
Every experimental picture shows results for corrected (Cor.) mode with corresponding aberrated
(Ab.) and not aberrated (NA) modes as insets. The expected simulated intensity and phase
profiles have been shown in the top row.

Singh et al.: Light correcting light with nonlinear optics
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the primary (major) aberration in any system of interest. As an
example, phase insets (dispersive aberrations) show astigmatism
aberrations incurred by wavelengths that have a factor of
α ¼ 2 difference between them. By splitting, resizing, and re-
combining the aberrated beams correctly, a perfect corrective
overlap is formed in the crystal (insets above NLC show the
overlapped phases) as part of the nonlinear detection system.
Alternatively, one can use a two-step nonlinear adjustment such
that the probe is with the same wavelength as the signal and thus
incurs identical distortions, as illustrated in Fig. 5(b). On the
detection side, the aberrated probe is shifted to a desired wave-
length for DFG while retaining the aberration by using another
unstructured pump. The new probe is then recombined with the
signal using a DM for the DFG process in a second crystal.

We now experimentally verify that resizing the beam, as
shown in Fig. 5(a), correctly compensates for the difference in
aberrational strength. To do so, a mismatch of β ¼ w2

w1
¼ 1.4663

between the probe (w2) and signal (w1) beam waists was made
when demagnified onto the crystal in Fig. 1. The encoded phase
gradient of each aberration (i.e., strength) was then altered by
changing the coefficient, Cj, of the phases (e.g., ΦAb ¼ CZn;m)
imparted by the SLM of beam j ¼ f1, 2g. Using the similarity

(S ¼ ½
P

x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
INAðx;yÞICorðx;yÞ

p
�2P

x;y
INAðx;yÞ

P
x;y
ICorðx;yÞ

) between the measured unaberrated

(INAðx; yÞ) and probe-corrected (ICorðx; yÞ) DFG intensity dis-
tributions, we quantify the correction efficacy for a range of
coefficient values (C1) encoded on the probe, while the signal
remained fixed. S ¼ 1 (S < 1) indicates perfect correction
(presence of uncorrected aberrations). For generality, three cases
where the aberrational Zernike order, magnitude of the aberra-
tion on the signal and spatial mode were tested are shown in
Fig. 6. In each case, we find the same coefficients do not cancel
the distortion in the generated beam. More specifically, in
Fig. 6(a), we find an astigmatic LGl¼1 signal beam with a co-
efficient of C2 ¼ 10 requires a coefficient of C1 ¼ 20.8 on the
probe to cancel the distortion due to weakening of the relative
strength from the beam enlargement. For qualitative compari-
son, insets (i), (ii) give the experimental unaberrated and aber-
rated DFG beams, along with the aberrating mode (iii). Insets
inside the plot show the corrected beams. Next, both the aberra-
tion type (trefoil) and strength (C2 ¼ 15) were altered in Fig. 6(b),
giving optimal correction with C1 ¼ 43.9 and in Fig. 6(c),
an astigmatic LGl¼2 with the same strength as Fig. 6(a) needs
approximately the same strength (C1 ¼ 21.4). As the radial

Fig. 4 Correction for superpositions of astigmatism and trefoil with arbitrarily chosen strengths.
Left column insets show the aberrating phases acting on spatial modes (top insets).
Experimentally aberrated (Ab.) and corrected (Cor.) far-field intensities for LG beams increasing
columnwise in OAM from l ∈ ½1, 6� are given for aberrations with (a) three- and (b) four-mode
superpositions. (c) Experimental results with the same OAM range for the LG superpositions
( 1ffiffi

2
p ðLGl þ LG−lÞ) are given for the same four-mode aberration.

Singh et al.: Light correcting light with nonlinear optics
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orders do not scale linearly with r but instead to its power, the
relative strength changes as C2

C1
¼ βm upon resizing. We find

β ¼ 1.443, 1.431, and 1.466, respectively, from Fig. 6, which
correlates well with the demagnification. Resizing the input
modes relative to each other thus accurately compensates for
the difference in phase due to dispersion. Using the factor α,
the required corrective mismatch in beam size, w2 ¼ w1ðαÞ 1

m ¼
w1ðλ1nλ2λ2nλ1

Þ 1
m, can be calculated for any dispersive medium, where

m is the main aberration order to be corrected. Note that if a
second crystal is used, as shown in Fig. 5(b), then no size adjust-
ment is needed nor is any prior knowledge of the aberration
order.

Finally, we demonstrate a prepare-and-measure system that
allows us to retrieve the correct encoded modes despite the pres-
ence of distortions. Here the conjugating nature allows not only
the phase distortions to be eliminated, but the phase of equiv-
alent spatial modes as well. For instance, only when the same
OAM mode is encoded on the signal and probe does the DFG
beam contain a flat phase. This forms a Gaussian intensity dis-
tribution in the far field that results in the presence of an on-axis
intensity. Such matching of input modes (from the orthogonality
relation of LG modes) allows it to also be used as a spatial mode
detector. For continuity, we chose the same previous four-state
Zernike superposition to be the aberration and show how such
a detection system without aberration, with an aberrated signal
beam and with a corrected detector mode (probe) performs. We
do so in the case where the OAM beam modal profiles expand
naturally with l as well as when a mitigation of this expansion is
encoded by a size-adjustment of wffiffiffiffiffiffiffiffiffi

ðlþ1Þ
p for each mode. In the

first case, observation of the detection system for the ground
truth (before aberrations) may be noted as having some
higher-mode cross talk in the detection matrix [Fig. 7(a)],
but largely detects the correct encoded OAM. However, with
aberrational effects added to the signal, one is not able to dis-
tinguish the modes sent as seen with cross talk extending to ad-
jacent modes and forming a cross-diagonal pattern. Applied

corrections on the detection beam retrieve the detection diago-
nal, although it begins to degrade as the higher-order modes are
used. This can be attributed to the enlarged sizes on both the
detection and signal beams causing additional aberrations and
mismatch being accumulated throughout the optical system
for both the beams. This detracts from the encoded and cor-
rected aberrations. Confirmation of this may be observed in
the case where the expansion of the beams was mitigated in
Figs. 7(d)–7(f), where the ground-truth detection matrix
[Fig. 7(d)] already demonstrates an improvement in the system.
The aberrational effects in Fig. 7(e) are additionally mitigated,
but a clear distortion of the information being sent is still
present, where adjacent modes are detected along with the
modes being sent. Application of the correction on the detector
mode then fixes the aberrational effects to yield the detection of
the correct modes [Fig. 7(f)], in close agreement to what was
observed for the nonaberrational case in Fig. 7(d).

Fig. 5 Our approach can also be used in dispersive media. For
instance, (a) by resizing the input beams of different wavelengths
with experimental results shown in Fig. 6 and (b) by using the
same initial wavelength in the dispersive media along with a sec-
ond NLC for wavelength conversion prior to the DFG stage.

Fig. 6 Experimental results: resizing one beam changes the
relative strength of the aberrations for (a) l ¼ 1 with astigmatism
(m ¼ 2) and coefficient of 10 (measured β ¼ 1.443), (b) l ¼ 1
with trefoil (m ¼ 3) and coefficient of 15 (measured β ¼ 1.431),
and (c) l ¼ 2 with astigmatism (m ¼ 2) and coefficient of 10
(measured β ¼ 1.466). Leftmost insets show the (i) unaberrated
downconverted mode, (ii) aberrated downconverted mode (no
correction), and (iii) aberrating Zernike mode phase distribution.

Singh et al.: Light correcting light with nonlinear optics
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4 Discussion and Conclusion
Efficiency is always a concern in nonlinear experiments. In our
experiment, with CW powers of 3.0 and 51 mW for the visible
and IR light, respectively, we obtained approximate efficiencies
ranging from ≈10−4 for l ¼ 1 through to ≈10−5 for l ¼ 6.
However, this could be pushed up by orders of magnitude by
optimized crystal parameters65–68 and pump shaping,69 and holds
unlimited potential with artificial resonant materials.70–73

The limits of this technique relate to the interplay between
efficiency, spatial resolution, and crystal parameters. For a given
crystal size and length, there would be restrictions on the spatial
resolution, where smaller transverse sizes act as an aperture to
the incoming beams and thicker crystals limit both the spatial
resolution of converted structure and, in the extreme cases, over-
all efficiency upon departing from the nondepletion regime.
Naturally, one may circumvent this with larger and thinner crys-
tals (reducing efficiencies), forming optimization parameters to
engineer relating to the application requirements. Material avail-
ability also restricts the choice of wavelengths involved. In the
event of dispersive aberrations, a compromise between effi-
ciency and aberrational complexity dictates the suitable scheme
for correction, as given in Fig. 6. Here correction restrained to
a main order can be achieved without the need for a second non-
linear process, while removing the restriction on correction

complexity requires a reduction in efficiency with the addition
of another nonlinear process. Of a more fundamental nature,
both beams must overlap at the crystal for the process to work,
and the beams should ideally be relayed (by a telescope, for in-
stance) to the near field for optimal correction, so that some care
must be taken in the optical arrangement.

To summarize, the practical implications of our measurement-
free approach when different probes and signal wavelengths en-
counter a dispersive aberrating medium were considered and
solutions explored. We showed that by resizing one input beam,
it is possible to compensate for dispersion and thus correct the
primary aberration, while using similar probe and signal wave-
lengths can reduce disparity at the cost of detecting DFG in the
IR region. Full correction, however, is also ultimately possible
using the same wavelengths and exploiting another nonlinear
process for wavelength conversion before the corrective DFG
process. Finally, by employing an identically aberrated detector
beam, we were able to restore the ability to detect the encoded
modes. Here good agreement was found between the detected and
encoded modes that were left to scale in size with OAM charge
and even further improvement when the scaling was compen-
sated for. Such a system would be useful for retrieving informa-
tion through noisy channels. Notably, the probing mechanism
reliance on light itself renders it advantageous under rapidly
varying distortions, such as atmospheric turbulence, making this
technique a valuable tool for various applications, from optical
communications to imaging and sensing. Furthermore, for a
nondegenerate wavelength setup as used here, one is afforded
the ability to detect in the VIS range when working with infor-
mation carried by structured light in the difficult-to-detect NIR
region.

In conclusion, we demonstrated the ability to use light as a
method to correct aberrated modes through DFG, without the
need for measurement. We have shown how this can be used in
dispersive systems and demonstrated its efficacy with a prepare-
and-measure communications protocol and with excellent signal
recovery, even in the presence of a highly aberrated medium.
Our approach offers a real-time measurement-free solution to
undoing the action of a medium on structured light modes, with
immediate applications in sensing, imaging, and communi-
cation.

5 Appendix
We can expand the concept and demonstrate that this correction
is not exclusive to second-order nonlinear processes, but a gen-
eral feature of parametric wave-mixing processes of even orders.
In a general form, the nonlinear response of a medium to an
incident field is of the form

PðnþmÞ ¼ χðnþmÞ
�Yn

i¼1

E

�� Ynþm

j¼nþ1

E�
�
; (3)

where PðnþmÞ is the nonlinear polarization of the medium and
χðnþmÞ is the susceptibility tensor.74 The first and second prod-
ucts represent upconversion and downconversion processes, re-
spectively, where the appropriate tensor components should be
considered. Without loss of generality, any scalar component of
an even nonlinear process involving input fields E1 and E2 can
be written as

Pð2nÞ ¼ χð2nÞðE1 þ E2ÞnðE�
1 þ E�

2Þn: (4)

Fig. 7 Probe field is used as a detector for OAM modes of
l ∈ ½−7, 7� in the cases where (a)–(c) the beam size expands
as dictated by the OAM value and (d)–(f) a size adjustment of

wffiffiffiffiffiffiffiffiffi
ðlþ1Þ

p is included to mitigate the OAM-dependent expansion

in the generated modes. Detection cross talk matrices of the sys-
tem are shown in (a) and (d) without applied aberrations; (b) and
(e) with the four-mode Zernike aberration; and (c) and (f) with the
aberrations corrected. Each row is normalized with the maximum
value.
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Noticeably, there will be terms responsible for the excitation
of fields with multiples of ωG ¼ ω1 − ω2, which are the terms
proportional to the powers of the product E1E�

2. These are re-
ferred to as higher-order difference wave mixing75 and represent
the absorption of multiple photons at once. We can write them as

Pð2nÞðnωGÞ ¼ χð2nÞMn
1M

n�
2 ¼ An

1A
n
2e

inðΦ1−Φ2Þ: (5)

Similar to the initial argument, if Φ1 ¼ Φinfo þΦAb and
Φ2 ¼ ΦAb then the generated phase profile would be
ΦG ¼ nΦinfo. Additionally, by setting the absolute part A2 to be
spatially uniform, we see that the generated field Mð2nÞ

G ¼ Mn
1 ,

meaning that in this case the generated field is a positive integer
power of the signal field. For the case of spatial transverse
modes, such as LG and Hermite–Gaussian beams, these fields
can be seen as multiple products of modes, for which there
are one-to-one correspondences15,76,77 that essentially map the
resulting field back to the original message unambiguously.
In addition, this nonlinear dependence has been shown to be
advantageous in detection processes.25

As long as diffraction effects are negligible, this is true not
only for a single process of DFG but also for cascaded nonlinear
processes: every Nh’th harmonic generation of E1 would add
an integer Nh multiple of the aberration profile to the phase
profile—the same being true for E2 in its Nk’th harmonic.
A number Nc of the cascaded DFG processes combines har-
monics of E1 and E2, thus applying a partial aberration correc-
tion Nc times. The total aberration correction is achieved when
Nh ¼ ðNc − 1Þ þ Nk. It is important to notice that the combi-
nation of harmonics generation and DFG processes can be
achieved in different media: instead of a single crystal or gas,
it is possible to use a sequence of crystals or gas chambers
combined by imaging systems. This can be used as method
to optimize the efficiency of a certain process or enable specific
wavelengths, which are not possible with a single process. This
includes the case where a corrected beam is generated at the
same wavelength as the original signal after two or more non-
linear interactions. In this case, a total depletion regime can be
used for a complete substitution of the aberrated signal for a
corrected beam.
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