• Matter and Radiation at Extremes
  • Vol. 6, Issue 3, 034401 (2021)
A. S. Samsonova), I. Yu. Kostyukov, and E. N. Nerush
Author Affiliations
  • Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950, Russia
  • show less
    DOI: 10.1063/5.0035347 Cite this Article
    A. S. Samsonov, I. Yu. Kostyukov, E. N. Nerush. Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse[J]. Matter and Radiation at Extremes, 2021, 6(3): 034401 Copy Citation Text show less

    Abstract

    The development of a self-sustained quantum electrodynamical (QED) cascade in a single strong laser pulse is studied analytically and numerically. A hydrodynamical approach is used to construct an analytical model of cascade evolution, which includes the key features of the cascade observed in 3D QED particle-in-cell (QED-PIC) simulations, such as the magnetic field dominance in the cascade plasma and laser energy absorption. The equations of the model are derived in closed form and solved numerically. Direct comparison between the solutions of the model equations and 3D QED-PIC simulations shows that our model is able to describe the complex nonlinear process of cascade development qualitatively well. Various regimes of the interaction based on the intensity of the laser pulse are revealed in both the solutions of the model equations and the results of the QED-PIC simulations.
    fe±t+ve±fe±±[E+(ve±×B)]fe±p=fγ(p)wpair(p,p)dp+fe±(p)wrad(p,p)dpfe±(p)wrad(p,p)dp,

    View in Article

    fγt+vγfγ=fe±(p)wrad(p,pp)dpfγ(p)wpair(p,p)dp,

    View in Article

    ×E=Bt,

    View in Article

    ×B=Et+fe+ve+dpfevedp,

    View in Article

    f(x,ε,θ,φ)002πf(x,ε,θ,φ)2πε2dφdε=n(x)Φ(θ).

    View in Article

    +n(x)dx=N,

    View in Article

    0πΦ(θ)sinθdθ=1,

    View in Article

    Wpair(χγ,εγ)=wpair(p,p)dp,

    View in Article

    Wrad(χp,εp)=wrad(p,p)dp,

    View in Article

    Irad(χp)=wrad(p,p)(εpεp)dp,

    View in Article

    χ=εES(E+v×B)2(vE)2,

    View in Article

    Dαt+Fαx=βS[α,β],

    View in Article

    tnp+x(vxnp)=S[n,pp],

    View in Article

    t(εpnp)+x(vxεpnp)=S[ε,pp]+S[ε,acc]ψvacS[ε,radi]ψplS[ε,radd]ψvac,

    View in Article

    tnγ+xvγ¯̄nγ=S[n,pp]+2S[n,radi]ψpl,

    View in Article

    tvγ¯̄nγ+xvγ2¯̄nγ=S[v,pp]+2S[v,radi]ψpl,

    View in Article

    tεγnγ+xvγ¯̄εγnγ=S[ε,pp]+2S[ε,radi]ψpl,

    View in Article

    tE2+B22+x(E×B)x=2S[ε,acc]ψvacjE,

    View in Article

    Σγt=20S[ε,radd]ψvacdx,

    View in Article

    vγ¯̄=0πΦ(θ)cosθsinθdθ,

    View in Article

    vγ2¯̄=0πΦ(θ)cos2θsinθdθ.

    View in Article

    vxE/B.

    View in Article

    Φ(θ)dNdcosθ=12,

    View in Article

    cosθ=cosθv1vcosθ.

    View in Article

    Φ(θ,v)=dNdcosθ=dNdcosθdcosθdcosθ=1v22(1vcosθ)2.

    View in Article

    fγ(t;x,θ)=Φθ,vγ(x,t)nγ(x,t).

    View in Article

    vγ¯̄=0πΦ(θ,v)cosθsinθdθ=1vγ1vγ2vγ2artanh(vγ),

    View in Article

    vγ2¯̄=0πΦ(θ,v)cos2θsinθdθ=2vγ¯̄vγ1.

    View in Article

    χγ=εγ|BEcosθ|ES=εγEES1vxcosθvx,

    View in Article

    S[n,pp]=nγ0πΦ(θ,vγ)Wpair(χγ,εγ)sinθdθWpair¯̄nγ,

    View in Article

    S[ε,pp]=εγnγ0πΦ(θ,vγ)Wpair(χγ,εγ)sinθdθWpair¯̄εγnγ,

    View in Article

    S[v,pp]=nγ0πΦ(θ,vγ)Wpair(χγ,εγ)cosθsinθdθVpair¯̄nγ.

    View in Article

    S[ε,β]=0πfγ(x,θ)Wpair(χγ,εγ)Δεβsinθdθ,

    View in Article

    Δεacc=μ21/3E2/3ε01/3(1cosθ)1/3,

    View in Article

    S[ε,acc]=E2/3εγ1/3μnγ0πΦ(θ,vγ)Wpair(χγ,εγ)×(1cosθ)1/3sinθdθE2/3εγ1/3μGrad¯̄nγ.

    View in Article

    Δεrad=04μ3/9Irad(χ)dt,

    View in Article

    dχdt=χ0ε0+92E2ε0t2(1cosθ)1/3Irad(χ),

    View in Article

    χ0=12χγ,ε0=12εγ.

    View in Article

    S[εp,rad]=nγ0πΦ(θ,vγ)Wpair(χγ,εγ)ΔεradsinθdθIvac¯̄nγ.

    View in Article

    χp=vεpBES.

    View in Article

    χe=vεpEES1vx2vx.

    View in Article

    fp(t,x,θ)=Φθ,vx(x,t)np(x,t),

    View in Article

    Φ(θ,v)=1v22(1vcosθ)2.

    View in Article

    S[n,radi]=np0πΦ(θ,vx)Wrad(χp,εp)sinθdθ=Wrad(χp,εp)npWpl¯̄np,

    View in Article

    S[ε,radi]=np0πΦ(θ,vx)Irad(χp)sinθdθ=Irad(χp)npIpl¯̄np,

    View in Article

    S[n,radi]=np0πΦ(θ,vx)cosθWrad(χp,εp)sinθdθ=Wrad(χp,γ)vxnpWpl¯̄vxnp.

    View in Article

    j=2npBBvB1vx2,

    View in Article

    vB=vB2πarccosvx1vx21vx2(1vx2)vB.

    View in Article

    EB=vx=21+1+(4npν/E)2.

    View in Article

    ψvac=vxM,

    View in Article

    ψpl=1vxM,

    View in Article

    tnp+x(vxnp)=Wpair¯̄nγ,

    View in Article

    t(εpnp)+x(vpεpnp)=Wpair¯̄nγεγ2+μE2/3εγ1/3Grad¯̄Ivac¯̄nγψvacIpl¯̄npψpl,

    View in Article

    tnγ+xvγ¯̄nγ=Wpair¯̄nγ+2Wrad¯̄npψpl,

    View in Article

    tvγ¯̄nγ+xvγ2¯̄nγ=Vpair¯̄nγ+2Vrad¯̄npψpl,

    View in Article

    t(εγnγ)+xvγ¯̄εγnγ=Wpair¯̄nγεγ+2Ipl¯̄npψpl,

    View in Article

    tE2+E2/vx22+xE2vx=2μE2/3εγ1/3Grad¯̄nγψvac,

    View in Article

    tΣγ=Ivac¯̄nγψvac.

    View in Article

    2npεp+nγεγ+E2+B22dx+Σγ=const.

    View in Article

    a(x,y,z)=cos2π2x4σx4cos2π2(y2+z2)2σr4.

    View in Article

    A. S. Samsonov, I. Yu. Kostyukov, E. N. Nerush. Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse[J]. Matter and Radiation at Extremes, 2021, 6(3): 034401
    Download Citation