• Spectroscopy and Spectral Analysis
  • Vol. 42, Issue 1, 115 (2022)
Yang XU1、1;, Lei LEI2、2;, Jun YAN1、1; *;, Yu-yun CHEN1、1;, Xue-cai TAN1、1;, Yu-qian LIU1、1;, and Qi WANG3、3;
Author Affiliations
  • 11. College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Forestry Chemistry and Engineering, Nanning 530006, China
  • 22. Hengxian Comprehensive Inspection and Testing Center, Hengxian 530300, China
  • 33. College of Material Science and Engineering, Kunming University of Science and Technology, Kunming 615000, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2022)01-0115-09 Cite this Article
    Yang XU, Lei LEI, Jun YAN, Yu-yun CHEN, Xue-cai TAN, Yu-qian LIU, Qi WANG. Determination of Glutaraldehyde in Water by Surface Enhanced Raman Spectroscopy Based on Metal Organic Framework Composite Substrate[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 115 Copy Citation Text show less
    Schematic diagram of Au@MIL-101/PATP detecting glutaraldehyde
    Fig. 1. Schematic diagram of Au@MIL-101/PATP detecting glutaraldehyde
    The UV-Vis absorption spectra of Au@MIL-101 with different concentrations of chlorogenic acid. Inset shows the color change of material solutions
    Fig. 2. The UV-Vis absorption spectra of Au@MIL-101 with different concentrations of chlorogenic acid. Inset shows the color change of material solutions
    Transmission scanning electron microscopy (TEM) of (A) MIL-101; (B)—(E) Au@MIL-101(The concentration of chloroauric acid is 0.4, 0.6, 0.8, 1.0 g·L-1); (F) the selected area electron diffraction pattern from the gold nanoparticles in Au@MIL-101
    Fig. 3. Transmission scanning electron microscopy (TEM) of (A) MIL-101; (B)—(E) Au@MIL-101(The concentration of chloroauric acid is 0.4, 0.6, 0.8, 1.0 g·L-1); (F) the selected area electron diffraction pattern from the gold nanoparticles in Au@MIL-101
    (a) X-ray energy dispersive spectroscopy (EDS) of Au@MIL-101; (b) Powder X-ray diffraction pattern of MIL-101(Cr) and Au@MIL-101; (c) X-ray photoelectron spectroscopy of Au@MIL-101 and Au@MIL-101/PATP; (d) Binding energy peak of S
    Fig. 4. (a) X-ray energy dispersive spectroscopy (EDS) of Au@MIL-101; (b) Powder X-ray diffraction pattern of MIL-101(Cr) and Au@MIL-101; (c) X-ray photoelectron spectroscopy of Au@MIL-101 and Au@MIL-101/PATP; (d) Binding energy peak of S
    (a) Raman spectra of PATP, glutaraldehyde and Schiff base; (b) Raman spectra of PATP and Au@MIL-101/PATP
    Fig. 5. (a) Raman spectra of PATP, glutaraldehyde and Schiff base; (b) Raman spectra of PATP and Au@MIL-101/PATP
    (a) Effects of different concentrations (0.4, 0.5, 0.7, 0.8, 1.0 g·L-1) of chloroauric acid and (b) different concentrations (0.01, 0.1, 1 mmol·L-1) of PATP on the enhancement effect
    Fig. 6. (a) Effects of different concentrations (0.4, 0.5, 0.7, 0.8, 1.0 g·L-1) of chloroauric acid and (b) different concentrations (0.01, 0.1, 1 mmol·L-1) of PATP on the enhancement effect
    Raman spectra of 10-4 mol·L-1 glutaraldehyde on (a) Au@MIL-101/PATP, (b) Au-PATP and (c) Au@MIL-101
    Fig. 7. Raman spectra of 10-4 mol·L-1 glutaraldehyde on (a) Au@MIL-101/PATP, (b) Au-PATP and (c) Au@MIL-101
    (a) SERS spectra of 10-5 mol·L-1 glutaraldehyde on composite substrate at different temperatures; Effect of experimental conditions on the intensities of SERS signals, including (b) temperature, (c) volume ratio of substrate and glutaraldehyde, (d) Catalysis of glacial acetic acid and reaction time
    Fig. 8. (a) SERS spectra of 10-5 mol·L-1 glutaraldehyde on composite substrate at different temperatures; Effect of experimental conditions on the intensities of SERS signals, including (b) temperature, (c) volume ratio of substrate and glutaraldehyde, (d) Catalysis of glacial acetic acid and reaction time
    (a) Uniformity of Au@MIL-101/PATP; (b) SERS detection of glutaraldehyde on different substrates under the same conditions; (c) Raman spectra of different aldehydes under the same test conditionsa—g: glutaraldehyde, formaldehyde, 5-hydroxymethylfurfural, acetaldehyde, glyoxal, benzaldehyde, acetone aldehyde
    Fig. 9. (a) Uniformity of Au@MIL-101/PATP; (b) SERS detection of glutaraldehyde on different substrates under the same conditions; (c) Raman spectra of different aldehydes under the same test conditions
    ag: glutaraldehyde, formaldehyde, 5-hydroxymethylfurfural, acetaldehyde, glyoxal, benzaldehyde, acetone aldehyde
    (a) Relationship between the concentration of glutaraldehyde and the relative intensity of characteristic peaks; (b) SERS spectra of glutaraldehyde with different concentrations
    Fig. 10. (a) Relationship between the concentration of glutaraldehyde and the relative intensity of characteristic peaks; (b) SERS spectra of glutaraldehyde with different concentrations
    样品含量/(μmol·L-1)加标量/(μmol·L-1)测定值/(μmol·L-1)回收率/%RSD/%
    0.50.46±0.02491.45.2
    自来水N.D.10.98±0.1498.614.5
    22.2±0.19111.88.7
    0.50.48±0.0689.812.7
    水库地表水N.D.11.1±0.15114.213.4
    22.1±0.18105.18.6
    Table 1. Detection and recoveries of glutaraldehyde in actual water samples at three spiked levels
    Yang XU, Lei LEI, Jun YAN, Yu-yun CHEN, Xue-cai TAN, Yu-qian LIU, Qi WANG. Determination of Glutaraldehyde in Water by Surface Enhanced Raman Spectroscopy Based on Metal Organic Framework Composite Substrate[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 115
    Download Citation