• Journal of Innovative Optical Health Sciences
  • Vol. 16, Issue 1, 2330002 (2023)
Xiaoquan Yang1、2, Tao Jiang2, Lirui Liu1, Xiaojun Zhao1, Ximiao Yu1, Minjun Yang1, Guangcai Liu1, and Qingming Luo3、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
  • 2HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, P. R. China
  • 3School of Biomedical Engineering, Hainan University, Haikou 570228, P. R. China
  • show less
    DOI: 10.1142/S1793545823300021 Cite this Article
    Xiaoquan Yang, Tao Jiang, Lirui Liu, Xiaojun Zhao, Ximiao Yu, Minjun Yang, Guangcai Liu, Qingming Luo. Observing single cells in whole organs with optical imaging[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2330002 Copy Citation Text show less
    References

    [1] P. Mazzarello. A unifying concept: The history of cell theory. Nat Cell Biol., 1, E13-E15(1999).

    [2] M. P. Snyder, S. Lin, A. Posgai et al. The human body at cellular resolution: The NIH human biomolecular atlas program. Nature, 574, 187-192(2019).

    [3] K. Zilles, K. Amunts. TIMELINE centenary of Brodmann’s map — Conception and fate. Nat. Rev. Neurosci., 11, 139-145(2010).

    [4] M. F. Glasser, T. S. Coalson, E. C. Robinson et al. A multi-modal parcellation of human cerebral cortex. Nature, 536, 171(2016).

    [5] K. M. Yamada, A. D. Doyle, J. Lu. Cell-3D matrix interactions: Recent advances and opportunities. Trends. Cell. Biol., 32, 883-895(2022).

    [6] H. J. Park, K. J. Friston. Structural and functional brain networks: From connections to cognition. Science, 342, 579(2013).

    [7] L. Luo. Architectures of neuronal circuits. Science, 373, eabg7285(2021).

    [8] R. Weissleder, M. J. Pittet. Imaging in the era of molecular oncology. Nature, 452, 580-589(2008).

    [9] L. V. Wang, H.-I. Wu. Biomedical Optics: Principles and Imaging(2007).

    [10] E. F. Ring, K. Ammer. Infrared thermal imaging in medicine. Physiol. Meas., 33, R33-R46(2012).

    [11] S. Iwano, M. Sugiyama, H. Hama et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science, 359, 935-939(2018).

    [12] W. J. Smith. Modern Optical Engineering: The Design of Optical Systems(2008).

    [13] A. Villringer, B. Chance. Non-invasive optical spectroscopy and imaging of human brain function. Trends. Neurosci., 20, 435-442(1997).

    [14] S. H. Yun, S. J. J. Kwok. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng., 1, 0008(2017).

    [15] T. Vo-Dinh. Biomedical Photonics Handbook(2015).

    [16] S. L. Jacques. Optical properties of biological tissues: A review. Phys. Med. Biol., 58, R37-R61(2013).

    [17] J. E. Falk, K. M. Smith. Porphyrins and Metalloporphyrins: A New Edition based on the Original Volume by J. E. Falk(1975).

    [18] T. G. Spiro. Metal Ions in Biology(1980).

    [19] F. F. Jobsis. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198, 1264-1267(1977).

    [20] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [21] V. Ntziachristos. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Meth., 7, 603-614(2010).

    [22] R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling et al. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc. Natl. Acad. Sci. USA, 88, 9382-9386(1991).

    [23] N. N. Boustany, S. A. Boppart, V. Backman. Microscopic imaging and spectroscopy with scattered light. Annu. Rev. Biomed. Eng., 12, 285-314(2010).

    [24] B. Valeur. Molecular Fluorescence: Principles and Applications(2002).

    [25] J. R. Lakowicz. Principles of Fluorescence Spectroscopy(1999).

    [26] N. Billinton, A. W. Knight. Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem., 291, 175-197(2001).

    [27] B. Chance, G. R. Williams. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem., 217, 383-393(1955).

    [28] B. Chance, G. R. Williams, W. F. Holmes et al. Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J. Biol. Chem., 217, 439-451(1955).

    [29] A. Mayevsky, B. Chance. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science, 217, 537-540(1982).

    [30] A. C. Giese, P. A. Leighton. Phosphorescence of cells and cell products. Science, 85, 428-429(1937).

    [31] B. R. Masters, P. T. So. Antecedents of two-photon excitation laser scanning microscopy. Microsc. Res. Tech., 63, 3-11(2004).

    [32] K. Wang, Y. Pan, X. L. Chen et al. 3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin in vivo: A comparative study. J. Innov. Opt. Heal. Sci., 15, 2250003(2022).

    [33] K. X. Wang, S. Y. Tang, S. Q. Wang et al. Monitoring microenvironment of Hep G2 cell apoptosis using two-photon fluorescence lifetime imaging microscopy. J. Innov. Opt. Heal. Sci., 15, 2250014(2022).

    [34] A. C. S. Talari, Z. Movasaghi, S. Rehman et al. Raman spectroscopy of biological tissues. Appl. Spectrosc. rev., 50, 46-111(2015).

    [35] Z. Z. Li, X. J. Zhang, C. G. Xiao et al. Combination of multi-focus Raman spectroscopy and compressive sensing for parallel monitoring of single-cell dynamics. J. Innov. Opt. Heal. Sci., 14, 2150021(2021).

    [36] Q. W. Wang, S. Wang, S. D. Cui et al. Multivariate analysis of serum surface-enhanced Raman spectroscopy of liver cancer patients. J. Innov. Opt. Heal. Sci., 15, 2250032(2022).

    [37] K. Czamara, K. Majzner, M. Z. Pacia et al. Raman spectroscopy of lipids: A review. J. Raman. Spectrosc., 46, 4-20(2015).

    [38] A. Rygula, K. Majzner, K. M. Marzec et al. Raman spectroscopy of proteins: A review. J. Raman. Spectrosc., 44, 1061-1076(2013).

    [39] I. L. Fabelinskii. Molecular Scattering of Light(1968).

    [40] R. Prevedel, A. Diz-Munoz, G. Ruocco et al. Brillouin microscopy: An emerging tool for mechanobiology. Nat Meth., 16, 969-977(2019).

    [41] G. Scarcelli, S. H. Yun. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photon., 2, 39-43(2007).

    [42] P. J. Campagnola, L. M. Loew. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol., 21, 1356-1360(2003).

    [43] I. Freund, M. Deutsch. Second-harmonic microscopy of biological tissue. Opt. Lett., 11, 94(1986).

    [44] R. M. Williams, W. R. Zipfel, W. W. Webb. Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J., 88, 1377-1386(2005).

    [45] R. Steinmeier, I. Bondar, C. Bauhuf et al. Laser doppler flowmetry mapping of cerebrocortical microflow: Characteristics and limitations. Neuroimage, 15, 107-119(2002).

    [46] B. de Campos Vidal, M. L. Mello, A. C. Caseiro-Filho et al. Anisotropic properties of the myelin sheath. Acta. Histochem., 66, 32-39(1980).

    [47] M. Wolman. Polarized light microscopy as a tool of diagnostic pathology. J. Histochem. Cytochem., 23, 21-50(1975).

    [48] A. S. Stender, K. Marchuk, C. Liu et al. Single cell optical imaging and spectroscopy. Chem. Rev., 113, 2469-2527(2013).

    [49] D. J. Brady. Optical Imaging and Spectroscopy(2009).

    [50] H. A. Macleod. Thin-Film Optical Filters(2018).

    [51] F. Zernike. Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9, 13(1942).

    [52] F. Zernike. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica, 9, 7(1942).

    [53] F. Zernike. How I discovered phase contrast. Science, 121, 345-349(1955).

    [54] R. D. Allen, G. B. David, G. Nomarski. The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z. Wiss. Mikrosk., 69, 193-221(1969).

    [55] P. Marquet, B. Rappaz, P. J. Magistretti et al. Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett., 30, 468-470(2005).

    [56] J. Mertz. Introduction to Optical Microscopy(2019).

    [57] J.-X. Cheng, X. S. Xie. Coherent Raman Scattering Microscopy(2013).

    [58] J. X. Cheng, X. S. Xie. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science, 350, aaa8870(2015).

    [59] C. W. Freudiger, W. Min, B. G. Saar et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [60] G. Clark, F. H. Kasten, H. J. Conn. History of Staining(1983).

    [61] R. Weissleder, V. Ntziachristos. Shedding light onto live molecular targets. Nat. Med., 9, 123-128(2003).

    [62] J. D. Bancroft. Theory and Practice of Histological Techniques(1982).

    [63] B. Kleeman, A. Olsson, T. Newkold et al. A guide to choosing fluorescent protein combinations for flow cytometric analysis based on spectral overlap. Cytom. Part. A., 93, 556-562(2018).

    [64] X. T. Zheng, C. M. Li. Single cell analysis at the nanoscale. Chem. Soc. Rev., 41, 2061-2071(2012).

    [65] R. S. Clay, T. H. Court. The History of the Microscope(1978).

    [66] G. Airy. On the diffraction of an object-glass with circular aperture. Trans. Camb. Phil. Soc., 5, 9(1835).

    [67] L. Rayleigh. On the theory of optical images, with special reference to the microscope. J. Microsc-Oxford., 23, 28(1903).

    [68] R. Horstmeyer, R. Heintzmann, G. Popescu et al. Standardizing the resolution claims for coherent microscopy. Nat. Photon., 10, 68-71(2016).

    [69] S. J. Sahl, S. W. Hell, S. Jakobs. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol., 18, 685-701(2017).

    [70] R. Heintzmann, C. Cremer. Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating. Proc. SPIE Int. Soc. Opt. Eng., 3568, 185-196(1999).

    [71] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc-Oxford, 198, 82-87(2000).

    [72] M. T. Wang, L. Wang, X. M. Zheng et al. Nonlinear scanning structured illumination microscopy based on nonsinusoidal modulation. J. Innov. Opt. Heal. Sci., 14, 2142002(2021).

    [73] Y. Wu, H. Shroff. Faster, sharper, and deeper: Structured illumination microscopy for biological imaging. Nat. Meth., 15, 1011-1019(2018).

    [74] S. A. Shroff, J. R. Fienup, D. R. Williams. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. J. Opt. Soc. Am. A, 26, 413-424(2009).

    [75] C. B. Muller, J. Enderlein. Image scanning microscopy. Phys. Rev. Lett., 104, 198101(2010).

    [76] A. G. York, S. H. Parekh, D. Dalle Nogare et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Meth., 9, 749-754(2012).

    [77] E. Mudry, K. Belkebir, J. Girard et al. Structured illumination microscopy using unknown speckle patterns. Nat Photon., 6, 312-315(2012).

    [78] M. G. Gustafsson. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 102, 13081-13086(2005).

    [79] R. Heintzmann. Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron, 34, 283-291(2003).

    [80] E. Betzig. Proposed method for molecular optical imaging. Opt. Lett., 20, 237-239(1995).

    [81] E. Betzig, G. H. Patterson, R. Sougrat et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [82] M. J. Rust, M. Bates, X. W. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Meth., 3, 793-795(2006).

    [83] S. T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [84] A. Small, S. Stahlheber. Fluorophore localization algorithms for super-resolution microscopy. Nat. Meth., 11, 267-279(2014).

    [85] T. Dertinger, R. Colyer, G. Iyer et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA, 106, 22287-22292(2009).

    [86] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [87] S. W. Hell. Far-field optical nanoscopy. Science, 316, 1153-1158(2007).

    [88] M. Andresen, M. C. Wahl, A. C. Stiel et al. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc. Natl. Acad. Sci. USA, 102, 13070-13074(2005).

    [89] V. Astratov. Label-Free Super-Resolution Microscopy(2019).

    [90] W. Z. Li Gong, Y. Ma, Z. Huang. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat Photon., 14, 8(2020).

    [91] F. Balzarotti, Y. Eilers, K. C. Gwosch et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606-612(2017).

    [92] J. A. Conchello, J. W. Lichtman. Optical sectioning microscopy. Nat Meth., 2, 920-931(2005).

    [93] F. S. Ernst, H. K. Stelzer, B.-J. Chang, F. Preusser et al. Light sheet fluorescence microscopy. Nat. Rev. Meth. Primers, 1, 73(2021).

    [94] J. Huisken, J. Swoger, F. Del Bene et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007-1009(2004).

    [95] A. H. Voie, D. H. Burns, F. A. Spelman. Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens. J. Microsc., 170, 229-236(1993).

    [96] P. J. Keller, A. D. Schmidt, J. Wittbrodt et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065-1069(2008).

    [97] T. Vettenburg, H. I. Dalgarno, J. Nylk et al. Light-sheet microscopy using an Airy beam. Nat Meth., 11, 541-544(2014).

    [98] T. A. Planchon, L. Gao, D. E. Milkie et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Meth., 8, 417-423(2011).

    [99] B. C. Chen, W. R. Legant, K. Wang et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998(2014).

    [100] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Meth., 2, 932-940(2005).

    [101] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [102] M. D. Cahalan, I. Parker, S. H. Wei et al. Two-photon tissue imaging: Seeing the immune system in a fresh light. Nat. Rev. Immunol., 2, 872-880(2002).

    [103] W. R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol., 21, 1368-1376(2003).

    [104] J. B. Pawley. Handbook of Biological Confocal Microscopy(2006).

    [105] M. Minsky. Memoir on inventing the confocal scanning microscope. Scanning, 10, 11(1988).

    [106] Y. C. Wu, X. F. Han, Y. J. Su et al. Multiview confocal super-resolution microscopy. Nature, 600, 279(2021).

    [107] T. Wilson, R. Juskaitis, M. A. Neil et al. Confocal microscopy by aperture correlation. Opt. Lett., 21, 1879-1981(1996).

    [108] A. Egner, V. Andresen, S. W. Hell. Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment. J. Microsc-Oxford, 206, 24-32(2002).

    [109] M. H. Liang, R. L. Stehr, A. W. Krause. Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination. Opt. Lett., 22, 751-753(1997).

    [110] J. Mertz. Optical sectioning microscopy with planar or structured illumination. Nat. Meth., 8, 811-819(2011).

    [111] M. A. A. Neil, R. Juskaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22, 1905-1907(1997).

    [112] D. Lim, K. K. Chu, J. Mertz. Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt. Lett., 33, 1819-1821(2008).

    [113] C. Ventalon, J. Mertz. Quasi-confocal fluorescence sectioning with dynamic speckle illumination. Opt. Lett., 30, 3350-3352(2005).

    [114] W. J. Liu, K. C. Toussaint, C. Okoro et al. Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy. Laser Photon. Rev., 12, 1700333(2018).

    [115] C. K. Li, V. Le, X. N. Wang et al. Resolution enhancement and background suppression in optical super-resolution imaging for biological applications. Laser Photon. Rev., 15, 1900084(2021).

    [116] S. L. Ernst, H. K. Stelzer. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: Confocal theta microscopy. Opt. Commun., 11, 10(1994).

    [117] D. J. Stephens, V. J. Allan. Light microscopy techniques for live cell imaging. Science, 300, 82-86(2003).

    [118] C. M. Winterflood, T. Ruckstuhl, D. Verdes et al. Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy. Phys. Rev. Lett., 105, 108103(2010).

    [119] K. C. Gwosch, J. K. Pape, F. Balzarotti et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Meth., 17, 217(2020).

    [120] E. H. K. S. Stefan Hell. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A, 9, 8(1992).

    [121] D. A. A. M. G. L. Gustafsson, J. W. Sedat. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc.-Oxford, 195, 7(1999).

    [122] M. C. Lang, J. Engelhardt, S. W. Hell. 4Pi microscopy with linear fluorescence excitation. Opt. Lett., 32, 259-261(2007).

    [123] D. Aquino, A. Schonle, C. Geisler et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat. Meth., 8, 353(2011).

    [124] G. Shtengel, J. A. Galbraith, C. G. Galbraith et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA, 106, 3125-3130(2009).

    [125] M. G. L. Gustafsson, L. Shao, P. M. Carlton et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).

    [126] M. T. G. Mickaël Lelek, G. Beliu, F. Schueder, J. Griffié, S. Manley, R. Jungmann, M. Sauer, M. Lakadamyali, C. Zimmer. Single-molecule localization microscopy. Nat. Rev. Meth. Primers, 1, 39(2021).

    [127] B. Huang, W. Q. Wang, M. Bates et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).

    [128] S. R. Arridge, J. C. Hebden. Optical imaging in medicine: II. Modelling and reconstruction. Phys. Med. Biol., 42, 841-853(1997).

    [129] S. L. Jacques, B. W. Pogue. Tutorial on diffuse light transport. J. Biomed. Opt., 13, 041302(2008).

    [130] V. Ntziachristos, J. Ripoll, L. H. V. Wang et al. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol., 23, 313-320(2005).

    [131] C. Dunsby, P. M. W. French. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D. Appl. Phys., 36, R207-R227(2003).

    [132] S. Yoon, M. Kim, M. Jang et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys., 2, 141-158(2020).

    [133] J. C. Hebden, S. R. Arridge, D. T. Delpy. Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol., 42, 825-840(1997).

    [134] N. G. Horton, K. Wang, D. Kobat et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon., 7, 205-209(2013).

    [135] G. S. Hong, A. L. Antaris, H. J. Dai. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng., 1, 0010(2017).

    [136] K. Wang, Q. Wang, Q. M. Luo et al. Fluorescence molecular tomography in the second near-infrared window. Opt. Exp., 23, 12669-12679(2015).

    [137] J. A. Carr, M. Aellen, D. Franke et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proc. Natl. Acad. Sci. USA, 115, 9080-9085(2018).

    [138] D. Huang, E. A. Swanson, C. P. Lin et al. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [139] J. M. Schmitt. Optical coherence tomography (OCT): A review. IEEE J. Sel. Top. Quant., 5, 1205-1215(1999).

    [140] E. Beaurepaire, A. C. Boccara, M. Lebec et al. Full-field optical coherence microscopy. Opt. Lett., 23, 244-246(1998).

    [141] B. E. Bouma, G. J. Tearney. Handbook of Optical Coherence Tomography(2002).

    [142] I. M. Stockford, S. P. Morgan, P. C. Chang et al. Analysis of the spatial distribution of polarized light backscattered from layered scattering media. J. Biomed. Opt., 7, 313-320(2002).

    [143] S. P. Morgan, M. P. Khong, M. G. Somekh. Effects of polarization state and scatterer concentration on optical imaging through scattering media. Appl. Opt., 36, 1560-1565(1997).

    [144] T. Treibitz, Y. Y. Schechner. Active polarization descattering. IEEE Trans. Pattern. Anal., 31, 385-399(2009).

    [145] N. Ji. Adaptive optical fluorescence microscopy. Nat. Meth., 14, 374-380(2017).

    [146] M. J. Booth, M. A. A. Neil, R. Juskaitis et al. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA, 99, 5788-5792(2002).

    [147] K. M. Hampson, R. Turcotte, D. T. Miller et al. Adaptive optics for high-resolution imaging. Nat. Rev. Meth. Primers, 1, 68(2021).

    [148] S. R. Arridge, J. C. Schotland. Optical tomography: Forward and inverse problems. Inverse Probl., 25, 123010(2009).

    [149] S. R. Arridge. Optical tomography in medical imaging. Inverse Probl., 15, R41-R93(1999).

    [150] V. Nuiachristos. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng., 8, 1-33(2006).

    [151] A. Ishimaru. Diffusion of light in turbid material. Appl. Opt., 28, 2210-2215(1989).

    [152] Q. Q. Fang, D. A. Boas. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Exp., 17, 20178-20190(2009).

    [153] A. B. Milstein, S. Oh, K. J. Webb et al. Fluorescence optical diffusion tomography. Appl. Opt., 42, 3081-3094(2003).

    [154] M. J. Niedre, R. H. de Kleine, E. Aikawa et al. Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proc. Natl. Acad. Sci. USA, 105, 19126-19131(2008).

    [155] L. H. V. Wang. Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model. Phys. Rev. Lett., 87, 043903(2001).

    [156] J. Li, L. H. V. Wang. Ultrasound-modulated optical computed tomography of biological tissues. Appl. Phys. Lett., 84, 1597-1599(2004).

    [157] L. H. V. Wang, S. Hu. Photoacoustic tomography: In Vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [158] L. V. Wang. Multiscale photoacoustic microscopy and computed tomography. Nat Photon., 3, 503-509(2009).

    [159] P. Beard. Biomedical photoacoustic imaging. Interface Focus, 1, 602-631(2011).

    [160] H. F. Zhang, K. Maslov, G. Stoica et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol., 24, 848-851(2006).

    [161] J. Bauer-Marschallinger, T. Berer, H. Grun et al. Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 59, 2631-2645(2012).

    [162] S. Gigan. Optical microscopy aims deep. Nat. Photon., 11, 14-16(2017).

    [163] Z. Yaqoob, D. Psaltis, M. S. Feld et al. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon., 2, 110-115(2008).

    [164] C. Moretti, S. Gigan. Readout of fluorescence functional signals through highly scattering tissue. Nat. Photon., 14, 361(2020).

    [165] J. Bertolotti, E. G. van Putten, C. Blum et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [166] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha et al. Fiber-optic fluorescence imaging. Nat. Meth., 2, 941-950(2005).

    [167] J. C. Jung, M. J. Schnitzer. Multiphoton endoscopy. Opt. Lett., 28, 902-904(2003).

    [168] H. Yoo, J. W. Kim, M. Shishkov et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med., 17, 1680-1684(2011).

    [169] J. M. Yang, C. Favazza, R. M. Chen et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med., 18, 1297(2012).

    [170] B. Wei, C. Wang, Z. Cheng et al. Clear optically matched panoramic access channel technique (COMPACT) for large-volume deep brain imaging. Nat. Meth., 18, 959-964(2021).

    [171] W. Spalteholz. Hand-Atlas of Human Anatomy(1898).

    [172] C. C. Pan, R. Y. Cai, F. P. Quacquarelli et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Meth., 13, 859(2016).

    [173] K. Chung, J. Wallace, S. Y. Kim et al. Structural and molecular interrogation of intact biological systems. Nature, 497, 332(2013).

    [174] T. C. Murakami, T. Mano, S. Saikawa et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci., 21, 625(2018).

    [175] K. R. Weiss, F. F. Voigt, D. P. Shepherd et al. Tutorial: Practical considerations for tissue clearing and imaging. Nat. Protoc., 16, 2732(2021).

    [176] K. Tainaka, A. Kuno, S. I. Kubota et al. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell. Dev. Biol., 32, 713-741(2016).

    [177] D. S. Richardson, W. Guan, K. Matsumoto et al. Tissue clearing. Nat. Rev. Meth. Primers, 1, 84(2021).

    [178] M. Pende, K. Vadiwala, H. Schmidbaur et al. A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. Sci. Adv., 6, eaba0365(2020).

    [179] D. S. Richardson, J. W. Lichtman. Clarifying tissue clearing. Cell, 162, 246-257(2015).

    [180] S. Zhao, M. I. Todorov, R. Y. Cai et al. Cellular and molecular probing of intact human organs. Cell, 180, 796(2020).

    [181] D. L. Rosene, N. J. Roy, B. J. Davis. A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J. Histochem. Cytochem., 34, 1301-1315(1986).

    [182] K. Amunts, C. Lepage, L. Borgeat et al. BigBrain: An ultrahigh-resolution 3D human brain model. Science, 340, 1472-1475(2013).

    [183] K. D. Micheva, S. J. Smith. Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron, 55, 25-36(2007).

    [184] H. Hintiryan, N. N. Foster, I. Bowman et al. The mouse cortico-striatal projectome. Nat. Neurosci., 19, 1100(2016).

    [185] F. Xu, Y. Shen, L. F. Ding et al. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nat. Biotechnol., 39, 1521(2021).

    [186] A. L. Wang, J. Yuan, W. H. Luo et al. Optimization of sample cooling temperature for redox cryo-imaging. J. Biomed. Opt., 19, 080502(2014).

    [187] A. W. Toga, K. L. Ambach, S. Schluender. High-resolution anatomy from in situ human brain. Neuroimage, 1, 334-344(1994).

    [188] A. A. Li, H. Gong, B. Zhang et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330, 1404-1408(2010).

    [189] B. Zhang, A. A. Li, Z. Q. Yang et al. Modified Golgi-Cox method for micrometer scale sectioning of the whole mouse brain. J. Neurosci. Meth., 197, 1-5(2011).

    [190] T. Zheng, Z. Q. Yang, A. A. Li et al. Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Opt. Exp., 21, 9839-9850(2013).

    [191] H. Gong, S. Q. Zeng, C. Yan et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. Neuroimage, 74, 87-98(2013).

    [192] H. Xiong, Z. Zhou, M. Zhu et al. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat. Commun., 5, 3992(2014).

    [193] X. J. Wang, H. Q. Xiong, Y. R. Liu et al. Chemical sectioning fluorescence tomography: High-throughput, high-contrast, multicolor, whole-brain imaging at subcellular resolution. Cell Rep., 34, 108709(2021).

    [194] H. Gong, D. L. Xu, J. Yuan et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat Commun., 7, 12142(2016).

    [195] M. N. Economon, N. G. Clack, L. D. Levis et al. A platform for brain-wide imaging and reconstruction of individual neurons. Elife, 5, e10566(2016).

    [196] K. Seiriki, A. Kasai, T. Hashimoto et al. High-speed and scalable whole-brain imaging in rodents and primates. Neuron, 94, 1085(2017).

    [197] X. Yang, Q. Zhang, F. Huang et al. High-throughput light sheet tomography platform for automated fast imaging of whole mouse brain. J. Biophoton., 11, e201800047(2018).

    [198] Q. Y. Zhong, A. A. Li, R. Jin et al. High-definition imaging using line-illumination modulation microscopy. Nat. Meth., 18, 309(2021).

    [199] C. Zhou, X. Q. Yang, S. A. Wu et al. Continuous subcellular resolution three-dimensional imaging on intact macaque brain. Sci. Bull., 67, 85-96(2022).

    [200] T. Jiang, B. Long, H. Gong et al. A platform for efficient identification of molecular phenotypes of brain-wide neural circuits. Sci. Rep.-UK, 7, 13891(2017).

    [201] Z. Li, Z. L. Chen, G. Q. Fan et al. Cell-type-specific afferent innervation of the nucleus accumbens core and shell. Front. Neuroanat., 12, 84(2018).

    [202] X. Li, B. Yu, Q. Sun et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc. Natl. Acad. Sci. USA, 115, 415-420(2018).

    [203] J. Wu, C. Guo, S. Chen et al. Direct 3D analyses reveal barrel-specific vascular distribution and cross-barrel branching in the mouse barrel cortex. Cereb Cortex., 26, 23-31(2016).

    [204] Q. Zhang, A. A. Li, S. Q. Chen et al. Multiscale reconstruction of various vessels in the intact murine liver lobe. Commun. Biol., 5, 260(2022).

    [205] J. W. Chen, G. C. Liu, W. Sun et al. Three-dimensional visualization of heart-wide myocardial architecture and vascular network simultaneously at single-cell resolution. Front. Cardiovasc. Med., 9, 945198(2022).

    [206] L. Gao, S. Liu, L. F. Gou et al. Single-neuron projectome of mouse prefrontal cortex. Nat. Neurosci., 25, 515(2022).

    [207] L. Deng, J. Chen, Y. Li et al. Cryo-fluorescence micro-optical sectioning tomography for volumetric imaging of various whole organs with subcellular resolution. iScience, 25, 104805(2022).

    [208] A. T. Francis, K. Berry, E. C. Thomas et al. In vitro quantification of single red blood cell oxygen saturation by femtosecond transient absorption microscopy. J. Phys. Chem. Lett., 10, 3312-3317(2019).

    [209] E. Marder. Neuromodulation of neuronal circuits: Back to the future. Neuron, 76, 1-11(2012).

    [210] J. Zhang, R. E. Campbell, A. Y. Ting et al. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol., 3, 906-918(2002).

    [211] S. Weiss. Fluorescence spectroscopy of single biomolecules. Science, 283, 1676-1683(1999).

    [212] V. Iyer, B. E. Losavio, P. Saggau. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J. Biomed. Opt., 8, 460-471(2003).

    [213] M. B. Bouchard, V. Voleti, C. S. Mendes et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photon., 9, 113-119(2015).

    [214] S. Kang, M. Duocastella, C. B. Arnold. Variable optical elements for fast focus control. Nat. Photon., 14, 533-542(2020).

    [215] J. T. Fan, J. L. Suo, J. M. Wu et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat. Photon., 13, 809(2019).

    [216] O. I. Rumyantsev, J. A. Lecoq, O. Hernandez et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature, 580, 100(2020).

    [217] B. Hulsken, D. Vossen, S. Stallinga. High NA diffractive array illuminators and application in a multi-spot scanning microscope. J. Eur. Opt. Soc-Rapid., 7, 2026(2012).

    [218] L. Gao, L. H. V. Wang. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel. Phys. Rep., 616, 1-37(2016).

    [219] M. Weigert, U. Schmidt, T. Boothe et al. Content-aware image restoration: Pushing the limits of fluorescence microscopy. Nat. Meth., 15, 1090(2018).

    [220] S. Ota, R. Horisaki, Y. Kawamura et al. Ghost cytometry. Science, 360, 1246-1251(2018).

    [221] S. Vilov, G. Godefroy, B. Arnal et al. Photoacoustic fluctuation imaging: Theory and application to blood flow imaging. Optica, 7, 1495-1505(2020).

    [222] J. Kim, J. Y. Kim, S. Jeon et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light. Sci. Appl., 8, 103(2019).

    [223] R. Horstmeyer, H. W. Ruan, C. H. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon., 9, 563-571(2015).

    [224] K. Amunts, H. Mohlberg, S. Bludau et al. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science, 369, 988(2020).

    [225] S. L. Ding, J. J. Royall, S. M. Sunkin et al. Comprehensive cellular-resolution atlas of the adult human brain. J. Comp. Neurol., 524, 3127-3481(2016).

    [226] B. C. Chen, W. R. Legant, K. Wang et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 439(2014).

    [227] T. A. Planchon, L. Gao, D. E. Milkie et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Meth., 8, 417-423(2011).

    [228] N. Wagner, F. Beuttenmueller, N. Norlin et al. Deep learning-enhanced light-field imaging with continuous validation. Nat. Meth., 18, 557(2021).

    [229] J. M. Wu, Z. Lu, D. Jiang et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell, 184, 3318(2021).

    [230] J. Rosen, G. Brooker. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon., 2, 190-195(2008).

    [231] B. Javidi, A. Carnicer, A. Anand et al. Roadmap on digital holography. Opt. Exp., 29, 35078-35118(2021).

    [232] K. Heinzmann, L. M. Carter, J. S. Lewis et al. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng., 1, 697-713(2017).

    [233] Q. L. Li, X. F. He, Y. T. Wang et al. Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt., 18, 100901(2013).

    [234] J. H. Shi, T. T. W. Wong, Y. He et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photon., 13, 609(2019).

    [235] H. H. Tu, Y. Liu, D. Turchinovich et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photon., 10, 534(2016).

    [236] H. Takemura, N. Palomero-Gallagher, M. Axer et al. Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. Elife, 9, e55444(2020).

    [237] C. L. Walsh, P. Tafforeau, W. L. Wagner et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Meth., 18, 1532(2021).

    [238] D. Schulz, S. Southekal, S. S. Junnarkar et al. Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph. Nat. Meth., 8, 347-352(2011).

    [239] P. L. Stahl, F. Salmen, S. Vickovic et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353, 78-82(2016).

    [240] R. Van de Plas, J. H. Yang, J. Spraggins et al. Image fusion of mass spectrometry and microscopy: A multimodality paradigm for molecular tissue mapping. Nat. Meth., 12, 366-372(2015).

    [241] H. Y. Zhu, G. C. Zou, N. Wang et al. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc. Natl. Acad. Sci. USA, 114, 2586-2591(2017).

    Xiaoquan Yang, Tao Jiang, Lirui Liu, Xiaojun Zhao, Ximiao Yu, Minjun Yang, Guangcai Liu, Qingming Luo. Observing single cells in whole organs with optical imaging[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2330002
    Download Citation