• Opto-Electronic Engineering
  • Vol. 48, Issue 2, 200218 (2021)
Wang Jinjin, Zhu Qiuhao, and Dong Jianfeng*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2021.200218 Cite this Article
    Wang Jinjin, Zhu Qiuhao, Dong Jianfeng. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. Opto-Electronic Engineering, 2021, 48(2): 200218 Copy Citation Text show less
    References

    [1] Choudhury S M, Wang D, Chaudhuri K, et al. Material platforms for optical metasurfaces[J]. Nanophotonics, 2018, 7(6): 959–987.

    [2] Chang S Y, Guo X X, Ni X J. Optical metasurfaces: progress and applications[J]. Annu Rev Mater Res, 2018, 48(1): 279–302.

    [3] Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380–479.

    [4] Rizza C, Falco A D, Scalora M, et al. One-dimensional chirality: strong optical activity in epsilon-near-zero metamaterials[J]. Phys Rev Lett, 2015, 115(5): 057401.

    [5] Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Phys Rev Lett, 2006, 97(16): 167401.

    [6] Dong J F, Zhou J F, Koschny T, et al. Bi-layer cross chiral structure with strong optical activity and negative refractive index[J]. Opt Express, 2009, 17(16): 14172–14179.

    [7] Lin H T, Chang C Y, Cheng P J, et al. Circular dichroism control of tungsten diselenide (WSe2) atomic layers with plasmonic metamolecules[J]. ACS Appl Mater Interfaces, 2018, 10(18): 15996–16004.

    [8] Lv T T, Li Y X, Ma H F, et al. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition[J]. Sci Rep, 2016, 6: 23186.

    [9] Mandal P, Mohan S, Sharma S, et al. Broadband multi-resonant circular dichroism in metal-VO2 hybrid dagger-like plasmonic structure for switching application[J]. Photonics Nanostruct-Fundam Appl, 2019, 37: 100735.

    [10] Sorathiya V, Dave V. Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency[J]. Opt Commun, 2020, 456: 124581.

    [11] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Adv Funct Mater, 2017, 27(47): 1704295.

    [12] Mao L B, Liu K, Zhang S, et al. Extrinsically 2D-chiral metamirror in near-infrared region[J]. ACS Photonics, 2020, 7(2): 375–383.

    [13] Wu R Y, Cui T J. Microwave metamaterials: from exotic physics to novel information systems[J]. Front Inform Technol Electron Eng, 2020, 21(1): 4–26.

    [14] Plum E, Liu X X, Fedotov V A, et al. Metamaterials: optical activity without chirality[J]. Phys Rev Lett, 2009, 102(11): 113902.

    [15] Zhang S, Fan W J, Panoiu N C, et al. Demonstration of near-infrared negative-index materials[J]. Phys Rev Lett, 2005, 95(13): 137404.

    [16] Cao T, Simpson R E, Cryan M J. Study of tunable negative index metamaterials based on phase-change materials[J]. J Opt Soc Am B, 2013, 30(2): 439–444.

    [17] Li W L, Meng Q L, Huang R S, et al. Thermally tunable broadband terahertz metamaterials with negative refractive index[J]. Opt Commun, 2018, 412: 85–89.

    [18] Ling F, Zhong Z Q, Huang R S, et al. A broadband tunable terahertz negative refractive index metamaterial[J]. Sci Rep, 2018, 8: 9843.

    [19] Ling F, Zhong Z Q, Zhang Y, et al. Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level[J]. Opt Express, 2018, 26(23): 30085–30099.

    [20] Luo Y B, Zeng Q S, Yan X, et al. A graphene-based tunable negative refractive index metamaterial and its application in dynamic beam-tilting terahertz antenna[J]. Microw Opt Technol Lett, 2019, 61(12): 2766–2772.

    [21] Iwai A, Righetti F, Wang B, et al. A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial[J]. Phys Plasmas, 2020, 27(2): 023511.

    [22] Huang Y J, Xie X, Pu M B, et al. Dual-functional metasurface toward giant linear and circular dichroism[J]. Adv Opt Mater, 2020, 8(11): 1902061.

    [23] Cao T, Zhang L, Simpson R E, et al. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials[J]. Opt Express, 2013, 21(23): 27841–27851.

    [24] Cao T, Li Y, Wei C W, et al. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials[J]. Opt Express, 2017, 25(9): 9911–9925.

    [25] Yin X H, Sch?ferling M, Michel A K U, et al. Active chiral plasmonics[J]. Nano Lett, 2015, 15(7): 4255–4260.

    [26] Gao F, Zhu J W, Ma H F, et al. Tunable circular dichroism of chiral metamaterial based on phase transition of vanadium dioxide (VO2)[J]. Mater Res Express, 2020, 7(4): 045802.

    [27] Wang T K, Wang Y K, Luo L N, et al. Tunable circular dichroism of achiral graphene plasmonic structures[J]. Plasmonics, 2017, 12(3): 829–833.

    [28] Kim T T, Oh S S, Kim H D, et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials[J]. Sci Adv, 2017, 3(9): e1701377.

    [29] Huang Z, Yao K, Su G X, et al. Graphene–metal hybrid metamaterials for strong and tunable circular dichroism generation[J]. Opt Lett, 2018, 43(11): 2636–2639.

    [30] Vila M, Hung N T, Roche S, et al. Tunable circular dichroism and valley polarization in the modified Haldane model[J]. Phys Rev B, 2019, 99(16): 161404.

    [31] Zhou S E, Lai P T, Dong G H, et al. Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime[J]. Opt Express, 2019, 27(11): 15359–15367.

    [32] Yao Z F, Lu M J, Zhang C Y, et al. Dynamically tunable and transmissive linear to circular polarizer based on graphene metasurfaces[J]. J Opt Soc Am B, 2019, 36(12): 3302–3306.

    [33] Amin M, Siddiqui O, Farhat M. Linear and circular dichroism in graphene-based reflectors for polarization control[J]. Phys Rev Appl, 2020, 13(2): 024046.

    [34] Hong Q L, Xu W, Zhang J F, et al. Optical activity in monolayer black phosphorus due to extrinsic chirality[J]. Opt Lett, 2019, 44(7): 1774–1777.

    [35] Yin S T, Ji W, Xiao D, et al. Intrinsically or extrinsically reconfigurable chirality in plasmonic chiral metasurfaces[J]. Opt Commun, 2019, 448: 10–14.

    [36] Peng R H, Liu J X, Xiao D, et al. Microfluid-enabled fine tuning of circular dichroism from chiral metasurfaces[J]. J Phys D: Appl Phys, 2019, 52(41): 415102.

    [37] Jing L Q, Wang Z J, Zheng B, et al. Kirigami metamaterials for reconfigurable toroidal circular dichroism[J]. NPG Asia Mater, 2018, 10(9): 888–898.

    [38] Liu Z G, Xu Y, Ji C Y, et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces[J]. Adv Mater, 2020, 32(8): 1907077.

    [39] Zhou L, Wang Y K, Zhou J X, et al. Tunable circular dichroism of stretchable chiral metamaterial[J]. Appl Phys Express, 2020, 13(4): 042008.

    [40] Zanotto S, Blancato A, Buchheit A, et al. Metasurface reconfiguration through lithium-ion intercalation in a transition metal oxide[J]. Adv Opt Mater, 2017, 5(2): 1600732.

    [41] Qu Y, Zhang Z D, Fu T, et al. Dielectric tuned circular dichroism of L-shaped plasmonic metasurface[J]. J Phys D: Appl Phys, 2017, 50(50): 504001.

    [42] Hu J P, Zhao X N, Lin Y, et al. All-dielectric metasurface circular dichroism waveplate[J]. Sci Rep, 2017, 7: 41893.

    [43] Cao T, Wei C W, Mao L B. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism[J]. Sci Rep, 2015, 5: 14666.

    [44] Zhao J Y, Zhang J F, Zhu Z H, et al. Tunable asymmetric transmission of THz wave through a graphene chiral metasurface[J]. J Opt, 2016, 18(9): 095001.

    [45] Jiang H, Zhao W Y, Jiang Y Y. High-efficiency tunable circular asymmetric transmission using dielectric metasurface integrated with graphene sheet[J]. Opt Express, 2017, 25(17): 19732–19739.

    [46] Shokati E, Asgari S, Granpayeh N. Dual-band polarization-sensitive graphene chiral metasurface and its application as a refractive index sensor[J]. IEEE Sens J, 2019, 19(21): 9991–9996.

    [47] Zhou J X, Wang Y K, Lu M J, et al. Giant enhancement of tunable asymmetric transmission for circularly polarized waves in a double-layer graphene chiral metasurface[J]. RSC Adv, 2019, 9(58): 33775–33780.

    [48] Zhao J X, Song J L, Xu T Y, et al. Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface[J]. Opt Express, 2019, 27(7): 9773–9781.

    [49] Song Q H, Wu P C, Zhu W M, et al. Split archimedean spiral metasurface for controllable GHz asymmetric transmission[J]. Appl Phys Lett, 2019, 114(15): 151105.

    [50] Hajian H, Ghobadi A, Serebryannikov A E, et al. VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption[J]. J Opt Soc Am B, 2019, 36(6): 1607–1615.

    [51] Hajian H, Ghobadi A, Serebryannikov A E, et al. Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials[J]. J Appl Phys, 2019, 126(19): 193102.

    [52] Asgari S, Rahmanzadeh M. Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings[J]. Opt Commun, 2020, 456: 124623.

    [53] Li T, Hu F R, Qian Y X, et al. Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave[J]. Chin Phys B, 2020, 29(2): 024203.

    Wang Jinjin, Zhu Qiuhao, Dong Jianfeng. Research progress of electromagnetic properties of tunable chiral metasurfaces[J]. Opto-Electronic Engineering, 2021, 48(2): 200218
    Download Citation