• Photonics Research
  • Vol. 7, Issue 9, 1003 (2019)
Lutong Cai*, Ashraf Mahmoud, Msi Khan, Mohamed Mahmoud..., Tamal Mukherjee, James Bain and Gianluca Piazza|Show fewer author(s)
Author Affiliations
  • Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
  • show less
    DOI: 10.1364/PRJ.7.001003 Cite this Article Set citation alerts
    Lutong Cai, Ashraf Mahmoud, Msi Khan, Mohamed Mahmoud, Tamal Mukherjee, James Bain, Gianluca Piazza, "Acousto-optical modulation of thin film lithium niobate waveguide devices," Photonics Res. 7, 1003 (2019) Copy Citation Text show less
    References

    [1] C. S. Tsai. Guided-Wave Acousto-Optics: Interactions, Devices, and Applications(1990).

    [2] N. J. Berg, J. M. Pellegrino. Acousto-Optic Signal Processing: Theory and Implementation(1996).

    [3] B. Eggleton, C. Poulton, R. Pant. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon., 5, 536-587(2013).

    [4] K. Fang, M. M. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 10, 489-496(2016).

    [5] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [6] R. M. White, F. W. Voltmer. Direct piezoelectric coupling to surface acoustic waves. Appl. Phys. Lett., 7, 314-316(1965).

    [7] M. M. de Lima, M. Beck, R. Hey, P. V. Santos. Compact Mach-Zehnder acousto-optic modulator. Appl. Phys. Lett., 89, 121104(2006).

    [8] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191-203(1985).

    [9] C. Wang, M. Zhang, X. Chen, M. Bertrand, S. Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [10] K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett., 27, 179-181(2002).

    [11] H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, S. N. Zhu. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett., 113, 113601(2014).

    [12] S. Gong, G. Piazza. Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans. Microw. Theory Tech., 61, 403-414(2013).

    [13] N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, V. Laude. Acousto-optically tunable lithium niobate photonic crystal. Appl. Phys. Lett., 96, 131103(2010).

    [14] E. Strake, G. P. Bava, I. Montrosset. Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method. J. Lightwave Technol., 6, 1126-1135(1988).

    [15] M. L. Bortz, M. M. Fejer. Annealed proton-exchange LiNbO3 waveguides. Opt. Lett., 16, 1844-1846(1991).

    [16] G. Poberaj, H. Hu, W. Sohler, P. Günter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 6, 488-503(2012).

    [17] W. C. Jiang, Q. Lin. Chip-scale cavity optomechanics in lithium niobate. Sci. Rep., 6, 36920(2016).

    [18] M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, G. Piazza. Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes. Opt. Express, 26, 25060-25075(2018).

    [19] J. Xu, R. Stroud. Acousto-Optic Devices: Principles, Design, and Applications(1992).

    [20] H. Qiao, J. Xu, S. Liu, X. Zhang, Q. Sun, H. Huang, G. Zhang. Simultaneous occurrence of beam deflection, holographic recording, and self-interference in one lithium niobate crystal. Opt. Lett., 26, 1221-1223(2001).

    [21] M. N. Armenise, V. M. N. Passaro, G. Noviello. Lithium niobate guided-wave beam former for steering phased-array antennas. Appl. Opt., 33, 6194-6209(1994).

    [22] N. Dostart, S. Kim, G. Bahl. Giant gain enhancement in surface-confined resonant stimulated Brillouin scattering. Laser Photon. Rev., 9, 689-705(2015).

    [23] J. J. Campbell, W. R. Jones. A method for estimating optimal crystal cuts and propagation direction for excitation of piezoelectric surface waves. IEEE Trans. Sonics Ultrason., 15, 209-217(1968).

    [24] K. Hashimoto. Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation(1990).

    [25] D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, G. Roelkens. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express, 18, 18278-18283(2010).

    [26] L. Cai, A. Mahmoud, G. Piazza. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications. Opt. Express, 27, 9794-9802(2019).

    [27] M. Itano, F. W. Kern, M. Miyashita, T. Ohmi. Particle removal from silicon wafer surface in wet cleaning process. IEEE Trans. Semicond. Manuf., 6, 258-267(1993).

    [28] H. Gnewuch, N. K. Zayer, C. N. Pannell, G. W. Ross, P. G. R. Smith. Broadband monolithic acousto-optic tunable filter. Opt. Lett., 25, 305-307(2000).

    [29] A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, M. M. de Lima. Synchronized photonic modulators driven by surface acoustic waves. Opt. Express, 21, 21669-21676(2013).

    [30] A. Rao, S. Fathpour. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron., 24, 3400114(2017).

    [31] S. Tadesse, M. Li. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun., 5, 5402(2014).

    [32] P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton. Polymer micro-ring filters and modulators. J. Lightwave Technol., 20, 1968-1975(2002).

    [33] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, M. Loncar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [34] K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, K. Srinivasan. Moving boundary and photoelastic coupling in GaAs optomechanical resonators. Optica, 1, 414-420(2014).

    [35] A. Yariv. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett., 14, 483-485(2002).

    CLP Journals

    [1] Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng, Jinsong Xia. Photonic devices based on thin-film lithium niobate on insulator[J]. Journal of Semiconductors, 2021, 42(4): 041304

    [2] Geng-Lin Li, Yue-Chen Jia, Feng Chen. Research progress of photonics devices on lithium-niobate-on-insulator thin films[J]. Acta Physica Sinica, 2020, 69(15): 157801-1

    [3] Ahmed E. Hassanien, Steffen Link, Yansong Yang, Edmond Chow, Lynford L. Goddard, Songbin Gong, "Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion," Photonics Res. 9, 1182 (2021)

    [4] Jintian Lin, Fang Bo, Ya Cheng, Jingjun Xu, "Advances in on-chip photonic devices based on lithium niobate on insulator," Photonics Res. 8, 1910 (2020)

    [5] Renyou Ge, Hao Li, Ya Han, Lifeng Chen, Jian Xu, Meiyan Wu, Yongqing Li, Yannong Luo, Xinlun Cai, "Polarization diversity two-dimensional grating coupler on x-cut lithium niobate on insulator," Chin. Opt. Lett. 19, 060006 (2021)

    Lutong Cai, Ashraf Mahmoud, Msi Khan, Mohamed Mahmoud, Tamal Mukherjee, James Bain, Gianluca Piazza, "Acousto-optical modulation of thin film lithium niobate waveguide devices," Photonics Res. 7, 1003 (2019)
    Download Citation