• Advanced Photonics
  • Vol. 3, Issue 5, 056002 (2021)
Changqin Liu1、2、†, Shunjia Wang1, Sheng Zhang1, Qingnan Cai1, Peng Wang1, Chuanshan Tian1, Lei Zhou1、*, Yizheng Wu1、2、*, and Zhensheng Tao1、*
Author Affiliations
  • 1Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.3.5.056002 Cite this Article Set citation alerts
    Changqin Liu, Shunjia Wang, Sheng Zhang, Qingnan Cai, Peng Wang, Chuanshan Tian, Lei Zhou, Yizheng Wu, Zhensheng Tao. Active spintronic-metasurface terahertz emitters with tunable chirality[J]. Advanced Photonics, 2021, 3(5): 056002 Copy Citation Text show less
    References

    [1] B. Ferguson, X. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [2] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [3] R. Ulbricht et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys., 83, 543-586(2011).

    [4] T. Kampfrath, K. Tanaka, K. A. Nelson. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics, 7, 680-690(2013).

    [5] M. Liu et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345-348(2012).

    [6] S. Schlauderer et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature, 569, 383-387(2019).

    [7] F. Langer et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature, 533, 225-229(2016).

    [8] B. Zaks, R. B. Liu, M. S. Sherwin. Experimental observation of electron-hole recollisions. Nature, 483, 580-583(2012).

    [9] J. Reimann et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature, 562, 396-400(2018).

    [10] Q. Su et al. Control of terahertz pulse polarization by two crossing DC fields during femtosecond laser filamentation in air. J. Opt. Soc. Am. B, 36, G1-G5(2019).

    [11] W. M. Wang et al. Tunable circularly polarized terahertz radiation from magnetized gas plasma. Phys. Rev. Lett., 114, 253901(2015).

    [12] X. Lu, X. C. Zhang. Generation of elliptically polarized terahertz waves from laser-induced plasma with double helix electrodes. Phys. Rev. Lett., 108, 123903(2012).

    [13] A. Houard et al. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett., 100, 255006(2008).

    [14] J. Dai, N. Karpowicz, X. C. Zhang. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett., 103, 023001(2009).

    [15] Z. Zhang et al. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat. Photonics, 12, 554-559(2018).

    [16] N. Amer et al. Generation of terahertz pulses with arbitrary elliptical polarization. Appl. Phys. Lett., 87, 221111(2005).

    [17] M. Sato et al. Terahertz polarization pulse shaping with arbitrary field control. Nat. Photonics, 7, 724-731(2013).

    [18] N. Kanda et al. The vectorial control of magnetization by light. Nat. Commun., 2, 362(2011).

    [19] H. Zhao et al. Generation and manipulation of chiral terahertz waves in the three-dimensional topological insulator Bi2Te3. Adv. Photonics, 2, 066003(2020). https://doi.org/10.1117/1.AP.2.6.066003

    [20] Y. Gao et al. Chiral terahertz wave emission from the Weyl semimetal TaAs. Nat. Commun., 11, 720(2020).

    [21] A. Ferrar et al. Flexible terahertz wire grid polarizer with high extinction ratio and low loss. Opt. Lett., 41, 2009-2012(2016).

    [22] J. Shan, J. I. Dadap, T. F. Heinz. Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization. Opt. Express, 17, 7431-7439(2009).

    [23] J. Masson, G. Gallot. Terahertz achromatic quarter-wave plate. Opt. Lett., 31, 265-267(2006).

    [24] X. Cai et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photonics, 3, 036003(2021).

    [25] L. Cong et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci. Appl., 7, 28(2018).

    [26] N. K. Grady et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [27] M. Jia et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Sci. Appl., 8, 16(2019).

    [28] T. T. Kim et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci. Adv., 3, e1701377(2017).

    [29] M. Liu et al. Temperature-controlled optical activity and negative refractive index. Adv. Funct. Mater., 31, 2010249(2021).

    [30] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [31] H.-H. Hsiao, C. H. Chu, D. P. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [32] Q. He et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [33] L. Luo et al. Broadband terahertz generation from metamaterials. Nat. Commun., 5, 3055(2014).

    [34] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [35] C. McDonnell et al. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces. Nat. Commun., 12, 30(2021).

    [36] T. Seifert et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics, 10, 483-488(2016).

    [37] T. Kampfrath et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol., 8, 256-260(2013).

    [38] D. Yang et al. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Adv. Opt. Mater., 4, 1944-1949(2016).

    [39] Y. Wu et al. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv. Mater., 29, 1603031(2017).

    [40] G. Torosyan et al. Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures. Sci. Rep., 8, 1311(2018).

    [41] M. Chen et al. Current-enhanced broadband THz emission from spintronic devices. Adv. Opt. Mater., 7, 1801608(2019).

    [42] T. Seifert et al. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm-1 from a metallic spintronic emitter. Appl. Phys. Lett., 110, 252402(2017).

    [43] S. Zhang et al. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. Light Sci. Appl., 10, 53(2021).

    [44] P. C. M. Planken et al. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B, 18, 313-317(2001).

    [45] Q. Wu, X. C. Zhang. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett., 67, 3523-3525(1995).

    [46] A. Leitenstorfer et al. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett., 74, 1516-1518(1999).

    [47] Z. Jin et al. Terahertz radiation modulated by confinement of picosecond current based on patterned ferromagnetic heterostructures. Phys. Status Solidi, 13, 1900057(2019).

    [48] L. Nadvorník et al. Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions. Phys. Rev. X, 11, 021031(2020).

    [49]

    [50] P. Antoine et al. Polarization of high-order harmonics. Phys. Rev. A, 55, 1314-1324(1997).

    [51] A. Fleischer et al. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photonics, 8, 543-549(2014).

    [52] E. D. Palik. Handbook of Optical Constants of Solids(1998).

    [53] F. Liu, X. Zhang. Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications. Biosens. Bioelectron., 68, 719-725(2015).

    [54] S. Savoia et al. Surface sensitivity of Rayleigh anomalies in metallic nanogratings. Opt. Express, 21, 23531-23542(2013).

    [55] D. Kong et al. Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv. Opt. Mater., 7, 1900487(2019).

    [56] T. S. Seifert et al. Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20. J. Phys. D., 51, 364003(2018).

    Changqin Liu, Shunjia Wang, Sheng Zhang, Qingnan Cai, Peng Wang, Chuanshan Tian, Lei Zhou, Yizheng Wu, Zhensheng Tao. Active spintronic-metasurface terahertz emitters with tunable chirality[J]. Advanced Photonics, 2021, 3(5): 056002
    Download Citation