• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 51 (2022)
Junhui PENG* and Evgenii TIKHONOV
DOI: 10.15541/jim20210179 Cite this Article
Junhui PENG, Evgenii TIKHONOV. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study[J]. Journal of Inorganic Materials, 2022, 37(1): 51 Copy Citation Text show less
References

[1] V KURBATKINA V, I PATSERA E, A LEVASHOV E et al. Self-propagating high-temperature synthesis of single-phase binary tantalum-hafnium carbide (Ta, Hf)C and its consolidation by hot pressing and spark plasma sintering. Ceramics International, 44, 4320-4329(2018). https://linkinghub.elsevier.com/retrieve/pii/S0272884217327189

[2] A ANDRIEVSKII R, S STRELNIKOVA N, I POLTORATSKII N et al. Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC. Powder Metallurgy and Metal Ceramics, 6, 65-67(1967).

[3] E RUDY. Ternary phase equilibria in transition metal-boron- carbon-silicon systems. Part II. Ternary systems, Vol. I. Air Force Materials Laboratory: Wright-Patterson Air Force Base, 35-73(1965).

[4] O CEDILLOS-BARRAZA, D MANARA, K BOBORIDIS et al. Investigating the highest melting temperature materials: a laser melting study of the TaC-HfC system. Scientific Reports, 6, 37962(2016). https://doi.org/10.1038/srep37962

[5] H ZHANG X, E HILMAS G, G FAHRENHOLTZ W et al. Hot pressing of tantalum carbide with and without sintering additives. Journal of the American Ceramic Society, 90, 393-401(2007). http://www.blackwell-synergy.com/toc/jace/90/2

[6] O CEDILLOS-BARRAZA, S GRASSO, A NASIRI N et al. Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC-HfC fabricated by spark plasma sintering. Journal of the European Ceramic Society, 36, 1539-1548(2016). https://linkinghub.elsevier.com/retrieve/pii/S0955221916300607

[7] J SMITH C, X YU X, Q GUO et al. Phase, hardness, and deformation slip behavior in mixed HfxTa1-xC. Acta Materialia, 145, 142-153(2018). https://linkinghub.elsevier.com/retrieve/pii/S1359645417309813

[8] J PENG, E TIKHONOV. xTaxC and HfC1-xNx. Computational Materials Science, 195, 110464(2021). https://linkinghub.elsevier.com/retrieve/pii/S0927025621001890

[9] J ZHANG, S WANG, W LI. Consolidation and characterization of highly dense single-phase Ta-Hf-C solid solution ceramics. Journal of the American Ceramic Society, 102, 58-62(2019). http://doi.wiley.com/10.1111/jace.2019.102.issue-1

[10] O GABALLA, A COOK B, M RUSSELL A. Reduced-temperature processing and consolidation of ultra-refractory Ta4HfC5. International Journal of Refractory Metals and Hard Materials, 41, 293-299(2013). https://linkinghub.elsevier.com/retrieve/pii/S0263436813001030

[11] A GHAFFARI S, M A FAGHIHI-SANI, F GOLESTANI-FARD et al. Spark plasma sintering of TaC-HfC UHTC via disilicides sintering aids. Journal of the European Ceramic Society, 33, 1479-1484(2013). https://linkinghub.elsevier.com/retrieve/pii/S0955221913000563

[12] G PABLO, Y LUIS, S MERCY et al. Characterization of the micro-abrasive wear in coatings of TaC-HfC/Au for biomedical implants. Materials, 10, 842(2017). http://www.mdpi.com/1996-1944/10/8/842

[13] C ZHANG, A GUPTA, S SEAL et al. Solid solution synthesis of tantalum carbide-hafnium carbide by spark plasma sintering. Journal of the American Ceramic Society, 100, 1853-1862(2017). http://doi.wiley.com/10.1111/jace.2017.100.issue-5

[14] P FOROUGHI, C ZHANG, A AGARWAL et al. Controlling phase separation of TaxHf1-xC solid solution nanopowders during carbothermal reduction synthesis. Journal of the American Ceramic Society, 100, 5056-5065(2017). http://doi.wiley.com/10.1111/jace.2017.100.issue-11

[15] J KIM, H KWON, B KIM et al. Finite temperature thermal expansion and elastic properties of (Hf1-xTax)C ultrahigh temperature ceramics. Ceramics International, 45, 10805-10809(2019). https://linkinghub.elsevier.com/retrieve/pii/S0272884219304560

[16] I GUSEV A, A REMPEL A, J MAGERL A. Disorder and order in strongly nonstoichiometric compounds. Berlin Heidelberg: Springer, 179-243(2001).

[17] H HOLLECK. Material selection for hard coatings. Journal of Vacuum Science and Technology A, 4, 2661-2669(1986). http://avs.scitation.org/doi/10.1116/1.573700

[18] Q ZENG, J PENG, R OGANOV A et al. Prediction of stable hafnium carbides: stoichiometries, mechanical properties, and electronic structure. Physical Review B, 88, 214107(2013). https://link.aps.org/doi/10.1103/PhysRevB.88.214107

[19] X YU X, R WEINBERGER C, B THOMPSON G. Ab initio investigations of the phase stability in tantalum carbides. Acta Materialia, 80, 341-349(2014). https://linkinghub.elsevier.com/retrieve/pii/S1359645414005886

[20] R OGANOV A, W GLASS C. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. Journal of Chemical Physics, 124, 244704(2006). http://aip.scitation.org/doi/10.1063/1.2210932

[21] O LYAKHOV A, R OGANOV A, T STOKES H et al. New developments in evolutionary structure prediction algorithm USPEX. Computer Physics Communications, 184, 1172-1182(2013). https://linkinghub.elsevier.com/retrieve/pii/S0010465512004055

[22] R OGANOV A, O LYAKHOV A, M VALLE. How evolutionary crystal structure prediction works and why. Accounts of Chemical Research, 44, 227-237(2011). https://pubs.acs.org/doi/10.1021/ar1001318

[23] G KRESSE, J FURTHMULLER. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169-11186(1996). https://link.aps.org/doi/10.1103/PhysRevB.54.11169

[24] E BLOCHL P. Projector augmented-wave method. Physical Review B, 50, 17953-17979(1994). https://link.aps.org/doi/10.1103/PhysRevB.50.17953

[25] P PERDEW J, A RUZSINSZKY, I CSONKA G et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, 136406(2008). https://link.aps.org/doi/10.1103/PhysRevLett.100.136406

[26] A TOGO, F OBA, I TANAKA. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B, 78, 134106(2008). https://link.aps.org/doi/10.1103/PhysRevB.78.134106

[27] K MOMMA, F IZUMI. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276(2011). http://scripts.iucr.org/cgi-bin/paper?S0021889811038970

[28] A COWLEY R. Acoustic phonon instabilities and structural phase transitions. Physical Review B, 13, 4877-4885(1976). https://link.aps.org/doi/10.1103/PhysRevB.13.4877

[29] R HILL. The elastic behavior of a crystalline aggregate. Proceedings of the Physical Society Section A, 65, 349-354(1952). https://iopscience.iop.org/article/10.1088/0370-1298/65/5/307

[30] Q CHEN X, H NIU, D LI et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19, 1275-1281(2011). https://linkinghub.elsevier.com/retrieve/pii/S0966979511000987

[31] F PUGH S. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 45, 823-843(1954).

[32] I RAZUMOVSKIY V, N POPOV M, H DING et al. Formation and interaction of point defects in group IVb transition metal carbides and nitrides. Computational Materials Science, 104, 147-154(2015). https://linkinghub.elsevier.com/retrieve/pii/S0927025615002153

[33] Y ZHANG, B LIU, J WANG. Self-assembly of carbon vacancies in sub-stoichiometric ZrC1-x. Scientific Reports, 5, 18098(2015). https://doi.org/10.1038/srep18098

Junhui PENG, Evgenii TIKHONOV. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study[J]. Journal of Inorganic Materials, 2022, 37(1): 51
Download Citation